SGU Episode 868: Difference between revisions

From SGUTranscripts
Jump to navigation Jump to search
(introduction completed)
(1st news item transcibed)
Line 275: Line 275:
=== Hot Jupiters <small>(14:23)</small> ===
=== Hot Jupiters <small>(14:23)</small> ===
* [https://news.mit.edu/2022/hot-jupiter-dark-side-0221 A “hot Jupiter’s” dark side is revealed in detail for first time]<ref>[https://news.mit.edu/2022/hot-jupiter-dark-side-0221 MIT News: A “hot Jupiter’s” dark side is revealed in detail for first time]</ref>
* [https://news.mit.edu/2022/hot-jupiter-dark-side-0221 A “hot Jupiter’s” dark side is revealed in detail for first time]<ref>[https://news.mit.edu/2022/hot-jupiter-dark-side-0221 MIT News: A “hot Jupiter’s” dark side is revealed in detail for first time]</ref>
'''B:''' Yeah hot Jupiters turned into a hot topic this week, with a close with a closer look at their dark side than ever before.
'''E:''' Oh I didn't realize they were all evil
'''B:''' So this was published in Nature Astronomy recently by researchers consisting of collaborators from MIT, Johns Hopkins University, Caltech, the big hitters there. We've talked about hot Jupiters a few times on the show, basically gas giants like Jupiter or even far bigger that are found near their parent star, very near, typically with orbital periods less than 10 days.
'''E:''' That's crazy imagine celebrating a birthday every 10 days I'd go crazy.
'''B:''' Right. And then of course you know how do they get so close to the sun, that's still a bit of a mystery you know, perhaps they migrated in. Perhaps they develop in situ.
'''S:''' Nah. They got to migrate in.
'''B:''' Yeah that's, I think that's the consensus, probably. So this one is about {{w|WASP-121b}} this is a hot Jupiter discovered six years ago, 850 light years from Earth.
'''E:''' That's not too far.
'''B:''' No, it has one of the shortest orbits ever detected. 30 hours. So if Steve, if Steve was born on that he would be 16 801 years old. Happy birthday Steve.
'''E:''' Happy birthday Steve. Oh and tomorrow happy birthday.
'''B:''' If you guessed that it's tightly locked you are correct. One side permanently faces its son the other side never sees it. This and this actually makes the atmosphere kind of shaped like a football apparently.
'''E:''' Oh it bulges the...
'''B:''' The title, the title forces. And and speaking of tidal forces, {{w|tidal locking}} is a fascinating process look it up. That's essentially the tidal interaction between two orbiting bodies and this creates a title breaking where one or both bodies eventually stop rotating relative to each other. Now our moon has already done that it's tidally locked and in in a few months, oh wait sorry in 50 billion years Earth will be tidally locked to the Moon as well but of course that will never happen since the Sun will likely vaporize us way before then. But it's this fascinating process. I remember reading a quote if you really want to see dramatic stuff happening, don't look at gravity, look at tidal forces because that kind of stuff can just rip planets apart. So we've been studying hot Jupiters like this for years but the nature of those studies have recently changed. Thomas Mikal-Evans who led the study as a postdoc at MIT said: "We are now moving beyond taking isolated snapshots of specific regions of exoplanet atmospheres to study them as the 3D systems they truly are", so this is kind of what's new here. So this is what the Hubble space telescope is allowing us to do now using its onboard spectroscopic camera so using the various intensities of the various wavelengths of light that are displayed using this camera. We can it gives us clues to the temperature and even the composition of the atmosphere 850 light years away. Truly amazing. Now that's kind of easy to do on the bright side and we've been doing that for a while but the breakthrough here, the real breakthrough here is being able to do that on the dark side of the gas giant, the side that's always facing outwards and never seeing its parents star. Because you have to look, it's really hard because you have to look for these super tiny changes in the in the gestalt if you will of the entire spectrum of the planet and not just the specific wavelengths. But if you want to track the water in the atmosphere though, you need to look at a specific line or what they call a spectral feature which tracks what the water is doing. So now regarding that specifically Mikal-Evans said: "We saw this water feature and mapped how it changed at different parts of the planet's orbit. That encodes information about what the temperature of the planet's atmosphere is doing as a function of altitude". So, using this changing water spectral feature the researchers could determine a lot of details about what's happening not only on the lit side and the dark side of the planet but also at lots of different altitudes on both sides of the planet. So they looked at, they determined that on the day side the temperature ranges from 2200°C or 4 000°F at its deepest layer. And then if you go up to the topmost layers of the atmosphere on the day side it's 3200°C and 5800°F so that so that's a rise in temperature with altitude. That's a, that's a thermal inversion. The night side is the opposite, it drops with, the temperature drops with altitude so at the highest altitudes it's 1200°C, 2200°F and at its deepest layers on the night side it's 1500°C, 2800°F. Pretty damn hot, pretty damn hot place, so what they were able to do was to track for the first time the water cycle on WASP-121b. No something like that's never been done before. Now we know the water cycle here on Earth, right? What are the hallmarks of the water cycle on Earth? Evaporation, right? Condensation and precipitation. Those three and of course if you depending on what website you can go you go to you could see four four or even seven, seven major elements to the water cycle on Earth but those are the big boys here. Evaporation, condensation, precipitation.
'''S:''' What about urination?
'''E:''' Rinse an repeat.
'''B:''' That's only loosely connected. So water evaporates it condenses into clouds and it rains blah, blah, blah. So the cycle, the water cycle on WASP-121b is I would say a lot less gentle, in the intense, in the intense day side of the planet it's so hot that water molecules are essentially blasted apart right because temperatures are like near 2700 C. Blast apart the water molecules. Now these components then are blown back blown to the dark side of the planet where the lower temperature allows them to recombine into water again. So it goes back into water.
'''E:''' Oh interesting.
'''B:''' Right? Which is then blown the the winds blow it to the to the light side of the planet again and the process starts all over.
'''E:''' Like it's playing pong with itself in a way.
'''B:''' So but a very fast pong, because the winds the sustained winds that are part of this process are thought to be up to 5km/s.
'''S:''' Oh my goodness.
'''B:''' That's 11 000 m/h winds. Now you know how hurricanes are classified as category 1, 2, 3? This would be a category 547 if you if you nonsensically just keep adding the numbers as it's done in one through five. Category 547 which of course is silly but it gives you an idea. They researchers calculate that these 11 000 m/h winds can move clouds across the entire planet in 20 hours. Ad this is a big planet this is like what 10 times the mass of Jupiter.
'''E:''' 10 times, wow.
'''B:''' Then they found out something else that might that that might be blowing around the planet. And this is even cooler. They put these so they look they have these temperature profiles right they know what the temperature is at various altitudes on the light and the dark side of the planet. So they know that they put those temperatures into the, into models to see what chemicals could exist in these environments. And get this there could be what they're calling metal clouds on the dark side of the planet.
'''E:''' Iron clouds?
'''B:''' Iron, titanium and the mineral {{w|corundum}}, which makes up sapphires and rubies it's a mineral that that makes up sapphires.
'''S:''' So does it rain rubies then?
'''B:''' Yes, kind of does but more liquidy. These metallized clouds then would be vaporized on the light side of the planet and then they would reform on the colder dark side and maybe, and maybe on it on its way back to the light side it rains liquid gems before being obliterated again in on the light side. So yeah it's a pretty pretty wicked planet. So in the I'm really looking forward to the future because the James Webb Space Telescope which is going to be looking at this later this year. And they hope to they hope to do stuff like track carbon monoxide as well on the planet which hasn't been done before. And I'm sure that there's going to be plenty more surprises for us on WASP-121b the super hot Jupiter. So can't wait.
'''S:''' That sounds really cool. Yeah I know there's some of the exoplanets that we're discovering have really extreme conditions. But I think the hot Jupiters are among the most extreme for the reasons that you stated, because they're so close.
'''B:''' Yeah be curious to see if you know what kind of life could even evolve in a place like that.
'''S:''' Yeah, nothing.
'''B:''' Because typically with those, with those you know with those wins 11 000m/, 5hm/s crazy stuff but I can't wait till James Webb takes a look at that bad boy.
'''S:''' All right thanks Bob.


=== Jumping To Conclusions <small>(22:54)</small> ===
=== Jumping To Conclusions <small>(22:54)</small> ===

Revision as of 05:37, 16 April 2022

  Emblem-pen.png This episode is in the middle of being transcribed by Hearmepurr (talk) as of 2022-04-15.
To help avoid duplication, please do not transcribe this episode while this message is displayed.

Template:Editing required (w/links) You can use this outline to help structure the transcription. Click "Edit" above to begin.


SGU Episode 868
February 26th 2022
868 nanoparticles.jpg
(brief caption for the episode icon)

SGU 867                      SGU 869

Skeptical Rogues
S: Steven Novella

B: Bob Novella

J: Jay Novella

E: Evan Bernstein

Quote of the Week

Ignorance more frequently begets confidence than does knowledge: it is those who know little, not those who know much, who so positively assert that this or that problem will never be solved by science.

Charles Darwin, English naturalist, geologist and biologist

Links
Download Podcast
Show Notes
Forum Discussion

Introduction; ISS Decommissioning Update

Voice-over: You're listening to the Skeptics' Guide to the Universe, your escape to reality.

S: Hello and welcome to the Skeptics' Guide to the Universe. Today is Wednesday, February 23rd, 2022 and this is your host, Steven Novella. Joining me this week are Bob Novella...

B: Hey, everybody!

S: Jay Novella...

J: Hey guys.

S: ...and Evan Bernstein.

E: Good evening folks!

S: Cara is off this week, she's busy with work so it's just the boys.

E: The four of us.

S: So you guys have heard NASA has announced its definitive plans for the International Space Station. We've been following this for a while, they've been saying yes you know basically you know until the end of the decade but now they, NASA is saying the ISS will operate through the end of 2030.

E: Okay.

S: And sometime in 2031 they are going to crash it into the ocean, going to bring the whole thing down.

J: Oh my god.

B: Well.

J: What is that going to look like I mean how much of it will survive past the atmosphere I wonder.

E: Not not much.

S: If they knew what they were doing they would like try somehow to film the whole thing.

J: Well why couldn't they? Why couldn't they film it from space and from from the ground?

S: Yeah they should.

J: They should wait for a clear day you know.

S: They should attach cameras to the ISS filming itself and streaming it.

E: Of course. I imagine they will.

S: I mean how often do you get to crash a giant space station into the ocean?

B: Every 30 years I think.

J: And there's no, there's no plans for a replacement right I guess they're trying to get private industry to do it you know there's not much information.

S: Yeah NASA is going to there they want to seed low Earth orbit to private industry so just like with you know getting rockets into low Earth orbit they're going to also just let private industry do low Earth orbit stations as well. So they're yeah they're pretty much done they have their eyes set on the Moon and Mars which is a good idea, there's already companies planning on putting you know stations up there.

J: Yeah China has their space station in the works.

S: Yeah.

J: You know they man China spends a lot of money on that stuff man they're they're really pushing hard to get into space.

S: So they're they're going to crash it uh they're planning on aiming it at a point in the Pacific Ocean known as Point Nemo which is the farthest point from land anywhere in this Pacific which is like that's a good idea, minimize the probability that you're going to hit hit land somewhere.

E: Yeah I wonder how much they're plus minuses for hitting the actual point like 100 km plus or minus but even so yeah I think Point Nemo is several thousand kilometers far away from any land so I imagine pretty safe.

B: Did the fish get any vote? Probably not. What about other countries do they get any say, I mean they put a lot of money and resources into this too.

J: I'm sure they all had to agree, right?

S: Yeah.

J: I mean a lot of countries have been wanting to back out or have like defunded it you know it's already.

E: Yeah Russia has pulled back sort of their participation in the upkeep costs and other things having to do with the ISS, we reported on this a couple years back. That that Russia is also moving in a direction in which they're going to have their own station up there. And they pulled resources away from my from ISS in order to start those programs.

S: It is sad it is too bad that there isn't any an economical and safe way to like push it into a higher orbit where it's out of everything.

E: Museum orbit.

S: Yeah museum orbit, exactly.

J: But so why is that because it still requires fuel, right?

S: Oh yeah be really expensive to do that.

J: Yeah it's not it's not a zero-sum game there.

S: Yeah I know they don't want pieces breaking off and stuff. So I guess it is better just to keep keep orbit decluttered as much as possible but.

B: Yeah and if that didn't get hit you know if that thing got hit and you know that could be.

E: That could be quite a lot of debris.

B: A ;pt pf debris, potentially.

E: Yeah there's already massive debris problems in space we don't need to feed the feed the problem any further got to take as much stuff out of out of space as we can.

B: And I'm sure they could they they'll do something fun like like digitize the entire thing so that you could literally like in VR go through pretty much exactly the way it is now just go through the entire space station, even work some of the some of the computers and machinery in VR it's like like you're pretty much right there that would be worthwhile.

S: That's true.

E: Look out the window there's the Earth, hello.

J: That's a very that's a cool idea Bob we should be with our technology that we have today I mean we could do this type of thing we could take you know 360 degree footage and then the computer can extrapolate from that and actually you know make it a 3D space.

E: Sure.

J: We should take historical footage of things like this and preserve them.

E: Yeah, yeah, absolutely.

B: Super high-res you know 8-10k you know whatever however many k you need.

S: Yeah that's happening now I mean but yeah definitely they should do a high-res scan of the of the space station. What's funny is we mentioned you know the life span of the ISS in our our forthcoming book and we we just had the final edits accepted. Yay! So we're done like no more changes to the copy of the book. But I managed to to squeeze in some updates including this one because the figures that I had in there from like a year ago were just slightly updated so I was able to get get the updates in there.

J: Oh it's gonna hurt so bad Steve when we have a significant thing that dates the book right that makes it so the book is no longer 100% accurate but there's nothing we could do about it.

E: That always happens.

S: It's constant though, it's constant. I mean even though like in the last you know nine months since our first draft there's been constant news items coming out that would require tweaks to the text in the book and then there was you know Bob you just sent sent us one today where it's like it's not a big deal it's just a little little tweak. But we talked about the price of getting stuff into orbit and you know Elon Musk tweeted a graph I guess that SpaceX put together, it's a logarithmic scale of the cost of getting a kilogram of stuff into orbit showing how much it's dropped you know since the Apollo days to the Falcon Heavy which I think is now the most the cheapest way to get stuff into space. But then also projecting the projected cost for the starship which at least you know they're claiming to be less than 200 a kilogram. That's a massive drop you know considering it was around a hundred thousand dollars 40-50 years ago. The average of the space shuttle was something in the 16-17 000 by the by the end, per kilogram now we're down in the 2-3 thousand dollars per kilogram range. So a huge drop, it's still expensive.

J: Of course it's going to go down.

S: Well I don't know I don't think it's what do you mean by of course like it's inevitable? It's I mean by that much? I don't think so I mean the reason, it was pretty plateaued until you know the reusable rocket technology was developed like that technology had to be developed in order to continue to bring down prices significantly you know.

J: Well that's what I'm saying though like once once the reusable components you know, once that had been put into you know production you know we also have a company that is 3D printing space capsules you know that that technology, and of course you know the the corporate push to get into outer space and everything of course that's going to dramatically lower the price.

S: But there are some, there are certain fixed costs you know like the fuel you know for example and there are certain certain components that are not going to be reusable. So yeah I do we you know that's one of one of the questions that we address in the book like how low will it come, will it go, like how far theoretically can we, can we bring it down and what will that mean in terms of access to space and all the repercussions of that. You know sub 200 is huge, that's like a, that's really cheap that once you get down to that level then a lot of things become more more feasible you know.

B: Yeah it might it might prevent the development of other potential technologies you know to to get into space, like you know the space elevator which we also talked about in the book.

S: Yeah yeah which is not gonna happen basically.

B: Yeah just probably not on yeah probably not on Earth but Moon and Mars different story.

S: Mars I think is the best bet for a space elevator just has the right gravity etc but yeah I don't think it's going to happen on Earth but you know if I remember like the spin thing we talked about like where you spin it up and I don't think that's going to happen either.

E: Spin and fling.

J: Oh really Steve you think that the inertial thing is not going to happen?

S: I just straight up don't think it's going to happen I don't think it's going to again when you can get when you can just rocket things into orbit at less than 200 a kilogram there's going to be no incentive for stuff like that. And that's going to be expensive and risky and it's I don't see that I don't see it competing with rockets. It's like one of the interesting things that we talk about is like the surprising persistence of technology. Using chemical rockets to blast off the surface of the Earth is gonna be you know basically the best option we have for the foreseeable future. Like there isn't really even any advanced technology that gets you away from that, all of the advanced propulsion we talk about doesn't have the thrust to get you off of a 1g planet. It's you really need the throttle, only chemical rockets have the thrust, there's nothing even on the drawing board that will that.

B: Well there was one if I remember if I remember from my research there was one iteration of nuclear rockets that could potentially do it. But I think that the jury is probably out on that. And yeah Steve just looking at this chart I mean if we get if they predict you know sub 200 per kilogram within the next couple of years for starship. I mean I would have to think that over the next 20-30 years they could get it sub 100 possibly when they really make it efficient. Sub 100 dollars per kilogram I mean that alone, would would why waste so much money and on any other way when that is that cheap. You know you'd have to come up with a dramatic new technology to make it worthwhile developing and pumping money in.

E: I mean the R&D cost for that thing alone would make it it doesn't sound like there's really going to be any other way to go. I mean you have to invent the new technology and spend what many hundreds of billions of dollars probably getting to that point oh my gosh.

B: Yeah I mean perhaps yeah and perhaps using things like accelerating small satellites into orbit from the from the surface.

S: Yeah I think small satellites.

B: Thousands of G's, thousands of G's that no human could survive.

E: But no payload no people nothing like that.

B: Right nothing like a people or or delicate satellites or heavy satellites, the lighter stuff I could see that as you know as like an adjunct to chemical to chemical rockets.

S: On that show For All Mankind which is a great like alternate universe look at where the space program could be if we kept it up. But towards yeah their advanced rockets were fission, right they were nuclear.

B: They got into that, huh?

S: Yeah yeah so they had they had fission based rockets which again that by itself not really good for for getting off the Earth because they don't have the thrust but how they got around that is they took off with the with the fission rocket attached to like a 747. Got that got up into you know as high as that can go and then it the fission ship blasted off from there. So I don't know if that's a way to do it like if you could do a two-stage thing like that, I don't know if anyone's crunched the numbers to know that that would work but but yeah fission rockets are great in terms of specific impulse their efficiency but they just don't have the thrust so I don't know I just think that it's going to be chemical rockets forever, you know. Until like really exotic technology comes into play. Which is fine, it's just weird to think about that like we already are using pretty much, and then and the other thing is like the most the best fuel is hydrogen, like we're already using probably the best fuel for chemical rockets that we will ever have.

B: Yeah, right?

S: Just physics, right?

B: It's just the physics and the rocket equation you know hydrogen is like the best stuff, Steve remember when we discovered that if the Earth was only a little bit, 10-15% was it─

S: 1.5g.

B: 1.5g then chemical rockets would not be an option for us.

S: You couldn't get into orbit like we don't have to, we could not get into orbit on a 1.5g planet like a chemical rocket the rocket equation would basically doom it.

B: Slap you in the face.

S: Yeah it's like wow so what if what do civilizations that evolve on a 1.5 or greater surface gravity.

E: That's it they're isolated, they're stuck where they live.

B: Heavy, really you know heavy heavy g planets are or you know if you live if you evolved on there you're in you're in deep trouble. And I wonder if you could like go to the top of a mountain Steve.

E: A 100 feet tall.

S: Yeah you wonder if there's good with what's the workaround in terms of like once you get fusion rockets can you develop a fusion rocket and then again you fly to the upper atmosphere. I mean there might be some way to extend it a little bit but again think about it it means that like we're not going to be to be settling worlds with with surface gravities over 1.5g, it's just not practical.

B: Right, right.

J: And plus why would we even bother going to a world that.

S: 1.5 you can get around 1.5 you could live there but once you once you land on the surface though you're there.

E: You're not space faring, yeah. That's it.

B: Good place to work out.

J: Yeah but I mean christ I'm tired enough as it is you know like do we really have to increase gravity.

E: 200 pounds becomes 300 pounds just like that.

S: I'll just, get your, get your you and your genetically engineered body.

J: All right I'm would, I'm down with that I just you know.

S: Or your android body.

J: I already got a lot on my shoulder Steve so let's not.

S: All right well we have an exciting show coming up for you so we're going to start with Bob your news item is about the dark side of hot Jupiters.

News Items

Hot Jupiters (14:23)

B: Yeah hot Jupiters turned into a hot topic this week, with a close with a closer look at their dark side than ever before.

E: Oh I didn't realize they were all evil

B: So this was published in Nature Astronomy recently by researchers consisting of collaborators from MIT, Johns Hopkins University, Caltech, the big hitters there. We've talked about hot Jupiters a few times on the show, basically gas giants like Jupiter or even far bigger that are found near their parent star, very near, typically with orbital periods less than 10 days.

E: That's crazy imagine celebrating a birthday every 10 days I'd go crazy.

B: Right. And then of course you know how do they get so close to the sun, that's still a bit of a mystery you know, perhaps they migrated in. Perhaps they develop in situ.

S: Nah. They got to migrate in.

B: Yeah that's, I think that's the consensus, probably. So this one is about WASP-121b this is a hot Jupiter discovered six years ago, 850 light years from Earth.

E: That's not too far.

B: No, it has one of the shortest orbits ever detected. 30 hours. So if Steve, if Steve was born on that he would be 16 801 years old. Happy birthday Steve.

E: Happy birthday Steve. Oh and tomorrow happy birthday.

B: If you guessed that it's tightly locked you are correct. One side permanently faces its son the other side never sees it. This and this actually makes the atmosphere kind of shaped like a football apparently.

E: Oh it bulges the...

B: The title, the title forces. And and speaking of tidal forces, tidal locking is a fascinating process look it up. That's essentially the tidal interaction between two orbiting bodies and this creates a title breaking where one or both bodies eventually stop rotating relative to each other. Now our moon has already done that it's tidally locked and in in a few months, oh wait sorry in 50 billion years Earth will be tidally locked to the Moon as well but of course that will never happen since the Sun will likely vaporize us way before then. But it's this fascinating process. I remember reading a quote if you really want to see dramatic stuff happening, don't look at gravity, look at tidal forces because that kind of stuff can just rip planets apart. So we've been studying hot Jupiters like this for years but the nature of those studies have recently changed. Thomas Mikal-Evans who led the study as a postdoc at MIT said: "We are now moving beyond taking isolated snapshots of specific regions of exoplanet atmospheres to study them as the 3D systems they truly are", so this is kind of what's new here. So this is what the Hubble space telescope is allowing us to do now using its onboard spectroscopic camera so using the various intensities of the various wavelengths of light that are displayed using this camera. We can it gives us clues to the temperature and even the composition of the atmosphere 850 light years away. Truly amazing. Now that's kind of easy to do on the bright side and we've been doing that for a while but the breakthrough here, the real breakthrough here is being able to do that on the dark side of the gas giant, the side that's always facing outwards and never seeing its parents star. Because you have to look, it's really hard because you have to look for these super tiny changes in the in the gestalt if you will of the entire spectrum of the planet and not just the specific wavelengths. But if you want to track the water in the atmosphere though, you need to look at a specific line or what they call a spectral feature which tracks what the water is doing. So now regarding that specifically Mikal-Evans said: "We saw this water feature and mapped how it changed at different parts of the planet's orbit. That encodes information about what the temperature of the planet's atmosphere is doing as a function of altitude". So, using this changing water spectral feature the researchers could determine a lot of details about what's happening not only on the lit side and the dark side of the planet but also at lots of different altitudes on both sides of the planet. So they looked at, they determined that on the day side the temperature ranges from 2200°C or 4 000°F at its deepest layer. And then if you go up to the topmost layers of the atmosphere on the day side it's 3200°C and 5800°F so that so that's a rise in temperature with altitude. That's a, that's a thermal inversion. The night side is the opposite, it drops with, the temperature drops with altitude so at the highest altitudes it's 1200°C, 2200°F and at its deepest layers on the night side it's 1500°C, 2800°F. Pretty damn hot, pretty damn hot place, so what they were able to do was to track for the first time the water cycle on WASP-121b. No something like that's never been done before. Now we know the water cycle here on Earth, right? What are the hallmarks of the water cycle on Earth? Evaporation, right? Condensation and precipitation. Those three and of course if you depending on what website you can go you go to you could see four four or even seven, seven major elements to the water cycle on Earth but those are the big boys here. Evaporation, condensation, precipitation.

S: What about urination?

E: Rinse an repeat.

B: That's only loosely connected. So water evaporates it condenses into clouds and it rains blah, blah, blah. So the cycle, the water cycle on WASP-121b is I would say a lot less gentle, in the intense, in the intense day side of the planet it's so hot that water molecules are essentially blasted apart right because temperatures are like near 2700 C. Blast apart the water molecules. Now these components then are blown back blown to the dark side of the planet where the lower temperature allows them to recombine into water again. So it goes back into water.

E: Oh interesting.

B: Right? Which is then blown the the winds blow it to the to the light side of the planet again and the process starts all over.

E: Like it's playing pong with itself in a way.

B: So but a very fast pong, because the winds the sustained winds that are part of this process are thought to be up to 5km/s.

S: Oh my goodness.

B: That's 11 000 m/h winds. Now you know how hurricanes are classified as category 1, 2, 3? This would be a category 547 if you if you nonsensically just keep adding the numbers as it's done in one through five. Category 547 which of course is silly but it gives you an idea. They researchers calculate that these 11 000 m/h winds can move clouds across the entire planet in 20 hours. Ad this is a big planet this is like what 10 times the mass of Jupiter.

E: 10 times, wow.

B: Then they found out something else that might that that might be blowing around the planet. And this is even cooler. They put these so they look they have these temperature profiles right they know what the temperature is at various altitudes on the light and the dark side of the planet. So they know that they put those temperatures into the, into models to see what chemicals could exist in these environments. And get this there could be what they're calling metal clouds on the dark side of the planet.

E: Iron clouds?

B: Iron, titanium and the mineral corundum, which makes up sapphires and rubies it's a mineral that that makes up sapphires.

S: So does it rain rubies then?

B: Yes, kind of does but more liquidy. These metallized clouds then would be vaporized on the light side of the planet and then they would reform on the colder dark side and maybe, and maybe on it on its way back to the light side it rains liquid gems before being obliterated again in on the light side. So yeah it's a pretty pretty wicked planet. So in the I'm really looking forward to the future because the James Webb Space Telescope which is going to be looking at this later this year. And they hope to they hope to do stuff like track carbon monoxide as well on the planet which hasn't been done before. And I'm sure that there's going to be plenty more surprises for us on WASP-121b the super hot Jupiter. So can't wait.

S: That sounds really cool. Yeah I know there's some of the exoplanets that we're discovering have really extreme conditions. But I think the hot Jupiters are among the most extreme for the reasons that you stated, because they're so close.

B: Yeah be curious to see if you know what kind of life could even evolve in a place like that.

S: Yeah, nothing.

B: Because typically with those, with those you know with those wins 11 000m/, 5hm/s crazy stuff but I can't wait till James Webb takes a look at that bad boy.

S: All right thanks Bob.

Jumping To Conclusions (22:54)

Nanoparticles To Stop Bleeding (41:43)

Internet 2035 (52:26)

Quickie with Bob (1:00:27)

  • AI and Nuclear Fusion

Who's That Noisy? (1:02:22)


New Noisy (1:06:55)

[clinking noise then strumming/vibrating sound]

J: That's it. It's a short one, but it's a fun one. If you guys think you know what the Noisy is, or, and very importantly, if you heard anything cool this week, just think of me! Take two seconds and pop me an email at wtn@theskepticsguide.org.

Announcements (1:07:24)

Questions/Emails/Corrections/Follow-ups (1:09:11)

Email #1: Cats are the biggest bird-killers

_consider_using_block_quotes_for_emails_read_aloud_in_this_segment_ with_reduced_spacing_for_long_chunks –

S: Alright, guys. Let's move on to Science or Fiction.

Science or Fiction (1:15:17)

Item #1: Astronomers have detected two supermassive black holes orbiting each other at the center of a distant galaxy, and are the closest such binary with an orbital period of just two years.[5]
Item #2: A new analysis finds that global farmland use could be cut 37-48% globally with the adoption of optimal farming practices.[6]
Item #3: A new study finds that the impact that caused the K-Pg extinction that killed the dinosaurs occurred at 3 in the afternoon, plus or minus 90 minutes.[7]

Answer Item
Fiction Afternoon dino extinction
Science Closest binary black holes
Science
Optimal farming practices
Host Result
Steve win
Rogue Guess
Jay
Afternoon dino extinction
Evan
Optimal farming practices
Bob
Afternoon dino extinction

Voice-over: It's time for Science or Fiction.

Jay's Response

Evan's Response

Bob's Response

Steve Explains Item #1

Steve Explains Item #3

Steve Explains Item #2

Skeptical Quote of the Week (1:32:30)

Ignorance more frequently begets confidence than does knowledge: it is those who know little, not those who know much, who so positively assert that this or that problem will never be solved by science.
Charles Darwin (1809-1882), English naturalist, geologist and biologist

Signoff ()

S: —and until next week, this is your Skeptics' Guide to the Universe.

S: Skeptics' Guide to the Universe is produced by SGU Productions, dedicated to promoting science and critical thinking. For more information, visit us at theskepticsguide.org. Send your questions to info@theskepticsguide.org. And, if you would like to support the show and all the work that we do, go to patreon.com/SkepticsGuide and consider becoming a patron and becoming part of the SGU community. Our listeners and supporters are what make SGU possible.

[top]                        

Today I Learned

  • Fact/Description, possibly with an article reference[8]
  • Fact/Description
  • Fact/Description

Notes

References

Vocabulary


Navi-previous.png Back to top of page Navi-next.png