SGU Episode 41

From SGUTranscripts
Revision as of 00:26, 31 March 2014 by Av8rmike (talk | contribs) (Skepticism segment)
Jump to navigation Jump to search
  Emblem-pen-orange.png This episode needs: transcription, formatting, links, 'Today I Learned' list, categories, segment redirects.
Please help out by contributing!
How to Contribute


SGU Episode 41
May 3rd 2006
Bosnia-pyramid.jpg
(brief caption for the episode icon)

SGU 40                      SGU 42

Skeptical Rogues
S: Steven Novella

B: Bob Novella

R: Rebecca Watson

P: Perry DeAngelis

Links
Download Podcast
Show Notes
SGU Forum


Introduction

You're listening to the Skeptics' Guide to the Universe, your escape to reality.

Toxic Cruise (00:50)

News Items

Bosnian Pyramids (9:24)

Questions and E-mails

Bubble Universes (17:24)

S: Well, we... let's move on; we have a lot of e-mail, and some excellent questions we've been getting in e-mail, so I want to try to cover a few of those this week. The first question comes from Elias Luna in Bronx, New York, from nearby. He writes:

I have a couple of questions which I would love to hear you guys discuss. What's your view on Michio Kaku's [pronounced kuh-ku] view of the universe as a multiverse, that we are nothing but a bubble in a sea of bubbles.

B: I believe it's pronounced "Michio Kaku".

S: Is it kah-ku?

B: I believe.

S:

If there is a so-called multiverse, when did it begin? I'm not speaking of our universe, because we all know the universe began with the Big Bang. But let's say there is a multiverse. What is beyond the multiverse and beyond what's beyond the multiverse and etc.? You see, it's a paradox and only way to escape is to say there's always been something somewhere, literally for infinite and will be, so there is no end or beginning in the grand scheme of things. And if there is an infinite amount of universes or multiverses there, there's an infinite amount of civilizations.

Then he goes on along—basically, that's his question. He asks a couple of other questions. So let's talk about that first. Bob, do you wanna start?

B: Well, yeah, his main question in the beginning is: if there is a multiverse, when did it begin? And you really can't ask that question, because, by definition, you have no contact to any of these other bubble universes within the multiverse or meta-verse. So how could you determine how old it is. I mean, our universe could have been created 15 billion years ago, but it might be a baby compared to other universes. Or it could be the first universe in a bubble universe. So you really can't know how old this multiverse might be. You just can't get outside of your universe, by definition.

S: Right. And just to clarify, that's because, by definition, our universe is everything that we can interact with. Anything that can affect us, everything that we can affect, everything that we can see is, by definition, part of our universe. So, from a theoretical point of view, another universe that was part of a grander multiverse would be forever inaccessible to us.

B: Right. And imagine if somehow you could contact another bubble universe within the multiverse, even that wouldn't help you, because who knows how old that universe is and how long that bubble has been around. You'd have to literally examine every one and find out what the oldest is and say, "OK, this is how old the multiverse is", so it's really inconceivable.

S: The other possibility is that—and Stephen Hawkings [sic] wrote about this—that the age of the universe or the multiverse may be finite but unbound. This is kind of a hard concept to get across, but it's kind of like the surface of a sphere. It's finite; the amount of space that it occupies is finite, but there's no beginning or end that you can point to; it's continuous. There's no specific boundary, but it's finite. So the time dimension of our universe may be the same thing. Maybe we didn't have a beginning and we won't have an end, even though the amount of time that it occupies could still be finite.

R: So does that mean that we're going to get around to the beginning again at some point?

S: I don't know. I don't know. When you start to talk about cosmology like that, whenever physicists write about that kind of cosmology, they always say something to the effect "you could really only express these ideas in, like, 12-dimensional derivative calculus, but I'm going to try to sort of paraphrase in English".

B: (chuckles)

S: So I mean, these are concepts that you can't really even understand, except on a very sophisticated mathematical level. So who knows what it all really means. But... This is also, by the way, Kaku is the guy—he was one of the co-originators of string theory, right? That's what it says on his website, anyway.

B: OK. I'm not sure if he was one of the originators.

P: So what is the point of positing the hypothesis—

S: That's exactly what I was going to get to next, Perry. This all very interesting, but unless you can derive from these notions a testable hypothesis, some way to test it, then it doesn't really enter the realm of empirical science. At best it's a mathematical construct and it's just a mathematical theorem. Now, mathematical theorems can be the beginning of a scientific exploration or a scientific investigation; it could say, "here's a model that's internally consistent and is consistent with what we observe". But you still have to then test it against something. You have to find some way to find out if it's actually real or not. And no one's been able to figure out a way to test string theory or the multi-universe theory or any of these other sort of big ultimate cosmological questions. So, at the moment, they still lie in the realm of theoretical mathematics and not empirical science.

Limits of Black Holes (22:16)

S: So let's go on to the second e-mail. This one's a lot shorter. This one is from Dan Hanch in California, and he writes,

Is there a limit to the amount of mass that a black hole can consume? Why don't the super-massive black holes in the center of galaxies gobble up all the surrounding highly dense stars, gases, etc.?

B: Let me grab that one again, Steve.

S: Oh, go ahead, Bob.

B: If that's all right. I know of no limit, and I can't think of why there would be a limit. As you just keep feeding a black hole matter, there's no reason why it's just not going to just keep sucking it up. Now I've heard—I've read estimates of super-massive black holes that have millions of Solar masses, and of course, a Solar mass is the matter equivalent in our sun. That's generally how they rate them, by Solar masses. I've seen them listed as millions of Solar masses and even billions, but recently, they found a super-massive black hole that is generating energy at the rate of 20 trillion suns. I've never heard an amount that huge. They never went into the trillions; I've only seen billions. But 20 trillions is truly staggering.

P: That's a lot of suns.

S: Was that part of the recent discovery, Bob, that some black holes generate more energy than they consume?

B: No, that's unrelated to Hawking radiation.

S: Yeah.

P: Are you doing about free energy there?

R: Yeah, are you saying we could have black-hole-powered cars one day?

P: Is that what you're talking about?

B: That would be interesting.

S: Theoretically. It was a recent discovery that's also been on a lot of the news sites recently. So-called green or energy-efficient black holes. But the implications of that, obviously, are unclear.

B: So I don't think there's any limit. I mean, a black hole could conceivably hold the entire universe worth of matter. There's no reason why it couldn't do that. So there is no limit. The other question that he had was: why doesn't it just keep on sucking up everything. People seem to think that black holes—I mean, they do have immense gravitational pull, but they seem to think they their reach is just beyond what anything else with mass has, but that's not true. If our sun turned into a black hole at this moment, I don't see any reason why the Earth wouldn't still continue to orbit around it. It wouldn't necessarily increase its gravitational pull and suck us it. Now, of course, it would have an event horizon and things like that. It'd have all these wacky features of a black hole, but it doesn't mean it's going to reach out any farther than anything else with that much gravitational pull. So, generally a black hole will clean out the area around it, and it'll create and produce lots of energy in the form of X-rays and things, things that... it's not leaving the black hole, it's just being created and emitted before it crosses the event horizon. So once it sweeps out that area, then the black hole become quiescent and pretty much just waits around for more matter to slowly get a little closer and closer and closer.

R: So it really is... it's more like a hole and not like a vacuum. Some people seem to think that it kind of acts like it's sucking, but it's really more of a hole.

S: No more than any other object with similar gravity, basically.

B: Right. Exactly.

S: And the gravity still falls off as the square of the distance, which is...

B: Right. Exactly. That's not violated with a black hole.

S: And also, another way to think about it is that it kind of is sucking in everything that's around it, that's close to it, as you say, but also, you know... things are really far away in the galaxy and outer space, and there's still the speed of light that can't be violated, so. Even if things do move towards the gravitational pull of a black hole, it would take a long time to draw in things that are very, very far away.

B: Right. And beyond a certain distance, you're essentially... it's just not there to you, gravitationally, because once you go a certain distance away—

S: You would orbit around it, but it wouldn't draw you in.

Origin of Life (26:15)

S: A closer question; this one regards the origin of life. This one is from Jeremy Freeman of Springfield, Illinois. Jeremy writes:

I recently discovered your podcast and just got caught up to your most recent. I'm disappointed that now I have to wait for you to release a new one, but you guys put on a great show; very interesting and entertaining.

Thanks.

In one of your podcasts and in your article, "The Starchild Project"

That's an article, by the way, that you could find on the NESS website, on our Articles page.

You refer to a point that Carl Sagan made and said that it would be incredibly unlikely that human and alien DNA would be compatible because it would be from two completely different evolutionary genetic code sequences. I agree with that line of thinking, but it got me thinking about a related question that maybe you could shed some light on. If I understand correctly, we share a genetic code with every other known form of life on Earth.

That is correct.

Therefore, we assume that an alien life form would have a genetic code from its planet of origin. What prevented multiple starting points of life on Earth? I mean, why is there only one set of genetic code? Why on a planet as hospitable to life as Earth, wouldn't life have started from multiple points? Why doesn't life spark even now, to create a new random microbe with different code to start a new evolutionary chain? I would like to know if scientists have attempted to answer this in the past and what their conclusions or theories were. Without an answer to that question and no evidence that shows that this has happened and that life died out, the likelihood of life on other planets decreases dramatically, at least in my mind. I'm not ready to go to the creationist route, but without a good answer, it's really bugging me.

R: We've got one on the cusp here, guys—

S: We need to draw him in.

R: —we need to pull him back and save him from the creationists.

S: So let me start with this one. So it is true that all life on Earth shares the same genetic code, and what we mean by that is the DNA sequence—you know, the DNA has four base pairs; like, four letters to the alphabet and each sequence of three base pairs codes for a specific either amino acid and then there are a few that regulate the transcription of that. Like for example, they may tell the transcription process to stop at a certain point. So that's the code. Which three letters equal which amino acid. There is absolutely no reason, by the way, why any two different species on this planet would have the same genetic code, except because of heredity. So therefore, we can conclude that all life on Earth is related to itself, to each other. Life that evolved on another planet—first of all, we wouldn't even know that they would have DNA. They may have some completely other molecule serving as their genetic code.

B: Could be a triple helix.

S: Whatever. It could be proteins. It could be something other than deoxyribonucleic acid, right? It could be some other chemical compound. And even if it was something like DNA, there's no reason why they would have randomly come up with the same genetic code, the same three letters equaling the same amino acid. They may, in fact, use a different... we use twenty—all life on Earth is derived from twenty amino acids. They may have a different set of amino acids then what we have. They may use some that we don't and not use some that we do. Now, in terms of has life arisen multiple times on this planet and why doesn't it. Well, one reason is that the conditions which were suitable for the origin of life on the early planet are no longer present. For examine, there probably was a lot more electrical storms early on. There was no oxygen in the atmosphere. There were probably lots more ammonia and methane and other compounds. So the early Earth, which may have been more suitable for the generation of life is not the conditions that exist now. Also, once life did arise, it would use up a lot of the resources in the environment. It would basically fill all the niches pretty quickly on the planet. And that would crowd out any new life trying to get a foothold. So whichever life arose first would have probably just crowded out any other later attempts at life arising.

Also, interestingly, there is one form of life that has a slightly different genetic code than everything else. Do you guys know what that is? I know Bob does.

R: A fundamentalist?

B: (chuckles)

S: That's not a bad guess. It's actually mitochondria. Mitochondria, which are organelles inside of our cells—they're the energy factories of our cells. They were probably a primitive form of bacteria that then formed a symbiotic relationship with larger cells. And they have a slightly different genetic code than does all other life. So, probably mitochondria represent a very early side branch of the branch of life that led to all existing life today. It's possible that they were a completely separate branch of life, but probably not, because they're still too similar. The genetic code's not totally randomized; it's very similar to other life; just a few differences. So what that also implies is that... Well, you know, there could've been multiple origins of life, multiple early branching points with different genetic codes, but only one branch survived. The one that is—later gave rise to all of life. So the early sort of chaotic biological systems on this world may have been competing and one branch survived. And that's why we only have genetic code at this point in time. So, those are some possible answers. Probably the most far out answer, which is still a possibility, is that life on Earth was actually seeded from outer space. If a meteorite landed on Earth that had some templates of DNA or whatever, that could have then seeded this planet with life. And then of course, if life on this planet arose from one point of seeding, it would all have the same genetic code. That's still very hypothetical, but that's another sort of possibility compatible with that. So, interesting question, and yeah, there's quite a bit of speculation that is compatible with what we see.

Iridology (32:34)

We received another e-mail from Kim, who asks:

Please talk more about alternate medicine on your podcasts. I know that's one of your primary interests and I'm dying to learn more about it since I know so little about it. I have a co-worker who believes very strongly in diagnosing people's ailments by reading the iris of the eye. I believe it is the iris.

Yes.

"Iridology", I think he calls it.

Yes, it is called iridology.

P: That's it.

Do you know anything about that? I had thyroid cancer and he told me he could see it a mile away in my eyes. I thought he meant I looked sad or something and was stunned when he explained what he meant. Nice of him to tell me after the fact.

B: Ha-ha!

Thanks again,
Kim

Well, yes, I'm very familiar with iridology. Iridology is a pseudo-science which basically involves making diagnoses by reading the color variations and flecks of color in the iris of the eye. This was cooked up about 150 years ago in the mid-1800s by a Hungarian physician named Ignatz von Péczely. I think that's how you pronounce it. And he said—he based it on an anecdote, where when he was a child, he found an owl who had broken his wing and he noticed a dark fleck in his iris, and when he fixed his wing, the dark fleck went away. And he said "hmmm". So then he started looking at the irises of his patients and thought he could correlate the flecks with what diseases they've had.

P: Sadly, he was wrong.

S: Apparently. Now, this was popularized in the United States by Bernard Jensen, D.C., Doctor of Chiropractic, who actually passed away in 2001.

P: Terrible, terrible.

S: He wrote several books about it; he was basically the leading American iridologist. He wrote, for example, "nature has provided us with a miniature television screen showing the most remote portions of the body by way of nerve reflex responses". So what he and other iridologists believe is that the iris is connected to every other part of the body through nerve endings, and whenever any part of the body is diseased, those nerve endings will change the iris, and you can read that by looking at the iris. Of course, these nerve endings have never been discovered. You can dissect the eye and... there is no such structures; they just simply don't exist. And there is absolutely not a single bit of science to support any of the claims of iridologists. I was reading an iridology website, and it's... you know, it's incredible how they just make these bold-face statements which are completely false. Under "what is iridology", they write, "iridology is the scientific analysis of patterns and structures in the iris of the eye which locates areas and stages of inflammation throughout the body". So that's... first of all, it's not a scientific analysis, 'cause there's zero empirical evidence that there's any correlation between how the iris looks and any disease or health state.

Further, despite the fact that this is utter and unmitigated nonsense, it has actually been researched to test the claims. Now, in 1979, Bernard Jensen—again, this is like the leader of American iridology, so you can't claim this guy didn't know what he was doing in terms of iridology—and two other proponents failed a scientific test in which they examined the photographs of eyes of 143 persons. Basically, some of them had kidney—clear-cut, proven kidney disease; the others were normal controls. And they could not do any better than chance, just to say who had kidney disease and who didn't have kidney disease. Surprise, surprise. And there have been other studies, very similar, where they basically do no better than guessing. In fact, there were... one great study where they actually sent some iridologists photographs of, like, monkey eyes and glass eyes, and they couldn't even tell that they weren't actually human eyes. They were, like, diagnosing the glass eyes.

P: (chuckles) The main problem with iridology is it's not as funny as phrenology, reading the lumps on your head. So it never made it into the Bugs Bunny cartoons.

S: (laughs) That's true.

P: That's the main problem with it. So Bugs Bunny was never able to ridicule iridology. Basically, what it comes down to, it's a cold reading. You know, the iridologists look at your iris and they give you a medical cold reading. And they also write that if... The changes may not show an existing disease, it just shows that you might have a predisposition to a disease. So of course, if they say—

B: Hedge your bets.

S: —"I see kidney disease in your iris", and you don't have any kidney disease, they can say, "oh, well you might get kidney disease in the future".

R: Or maybe your mother has kidney disease.

S: Right. So does that sound familiar? That's exactly what the psychics do. "Oh, this isn't true of you? Well, it may be in the future. Just hold on to that; that's something that may come true in the future."

B: So they could never be wrong.

S: That's right.

B: But... there is something that I learned about irises that are very fascinating. Did you know that your iris is the most unique, you know, "fingerprint", quote-unquote, for you, more so than even your DNA? The pattern that your iris is so unique, it's more unique than your DNA. And that's why the—

S: Well, technically, Bob, you can't be more unique, because unique means one of a kind. So you're not using that term exactly correctly.

P: Very good.

B: Well, I mean, you could be a twin and you're not unique but still your iris would be unique.

S: Right. I know what you're saying. There are more points of difference between the irises of two people than there are points of difference between their DNA.

B: Right.

S: So that's what you need to say. But anyway... So let me read you... That is true, and iris scans may become a method of identification in the future. And the reason for that is because—

B: Well it is now! It is now.

S: That's true. You're right.

B: —biometric scanning. If you do one iris, it's unbelievably accurate, but if you do both irises, it's like one in 20 billion or 50 billion or something crazy.

S: Well, that's because—the reason why there could be more detail in the iris than in your DNA is because our bodies are more complex once they develop than is encoded in the DNA. The DNA just has rules for how things develop, but by following those rules, you can actually get more information than is in the DNA itself. This is why our brains contain more information than our DNA does, right?

B: Exactly. Right. Exactly.

Name that Logical Fallacy (39:12)

S: I do wanna—Now, last week we began the Name that Logical Fallacy segment and I wanna continue that this week. And I was reading through our list of logical fallacies. I also had written an article for the New England Skeptical Society—again, that's on our website—about logical fallacies and I realized that I really need to update it. So I've been doing that for the past week or so, and hopefully fairly soon, I'll publish an updated article on arguments in general, premises, etc. and also a greatly expanded list of logical fallacies. I searched for other peoples' lists of logical fallacies just to see what they contain. The longest list that I found was 43 different logical fallacies. We have our top 20 on the website. But actually, when you read them, the vast majority of the new ones or the extra ones that are not on our list are really just sub-types or derivations of existing ones. So, it depends on whether or not you want to lump various fallacies into one type or general type or you want to split out even fine differences between them. So, the list could be longer or shorter depending upon that. But anyway... so keep an eye out for my expanded description of logical fallacies. But while I was reading the iridology site, one paragraph struck me; I thought that would be a good one to try to identify a subtle logical fallacy.

Now on this same site, and of course again, we'll have the link for you, it describes how iridology works, what it shows, and there's also a paragraph on what iridology will not show. Let me read this for you guys and tell me if anything strikes you as a logical fallacy. It says

Iridology will not show or name a specific disease, but provides information about the body tissues which indicate tendencies toward conditions of disease, often before symptoms appear. Iridology will not reveal surgery performed under anesthesia, as nerve impulses are discontinued. Iridology cannot locate parasites, gallstones, or germ life but will indicate the presence of inflammation and toxic conditions. It will not show pregnancy, as that is a normal function of the female body.

So what do you guys think about that? Now I admit you have to have that into a little bit of context of the claims for and against iridology. Well, why do you think they go out of their way to say that having your kidney removed surgically won't cause your iris to change, to reveal, for example, kidney disease?

R: To cover their ass? (laughs)

S: To cover their ass. Exactly. Because wouldn't that be an obvious test of iridology? So if I get my kidney whacked out, why doesn't my kidney fleck show up, you know?

R: Right.

S: So what would you—what logical fallacy do you think that is? (pauses) That is special pleading.

R: Wait, wait, wait! You didn't give me a chance to think about it! (laughs)

S: Gotta be quicker than that, Rebecca; come on. That's special pleading. All of these are special pleading: pregnancy, the surgery. So why don't these things show up in iridology, you know, because they've been proven not to. And they say, "oh, that's because under anesthesia, the nerve impulses are discontinued", which is false, by the way, so it's also a false premise. You don't discontinue nerve impulses under—that doesn't mean anything. And they certainly don't anesthetize your eyeballs when you had your kidneys taken out. So that's just—that's a false premise, but it's also just special pleading. There's no particular reason, based upon anything that anyone is claiming about iridology, that it wouldn't change your iris if other things would. Same thing about pregnancy. The fact that it's normal versus a disease state doesn't mean that it wouldn't have an effect, physiologically, on some other part of the body, especially if it were intimately connected to it the way they argue that it is. So those are just forms of special pleading.

The Scope of Skepticism (43:06)

S: That's all for the specific e-mails for this week; however, I did want to bring up next in a separate segment a discussion that is in response to some e-mails that we've been getting. I just want to basically lump these e-mails together into the bigger topic and discuss it. And that's basically "what is the scope of skepticism?"; you know, what kinds of things does skepticism cover? And specifically, some people have asked us what is the scope of our show. What topics do we talk about or not talk about... Have we made specific choices or decisions about what kind of things we will talk about.

P: I was hoping people could discern that by listening.

S: Yeah... to some degree, I mean... Basically, to lay it out, our philosophy is what we call "scientific skepticism". The earliest reference to that phrase that I have been able to find was Carl Sagan in The Demon Haunted World. But we basically use that to refer to our philosophy, which is the notion that all claims to truth—to factual truth should be subjected to appropriate scientific analysis to... analysis for logic and evidence, and that acceptance or rejection should be apportioned to the evidence. It is certainly dependent upon a naturalistic and materialistic philosophical worldview, which basically means we operate in a realm in which we deal with the material world functioning under natural processes. We do not allow for magic or supernatural explanations. Now, within the skeptical community, there's a bit of—and I'm sure within philosophical circles—there's a discussion about whether or not science requires that we live in a naturalistic, materialistic universe; whether science can be used to prove that we live in a naturalistic or materialistic world, or that science just makes the arbitrary choice to limit ourselves to that because that's how it works. And I think, in fact, we discussed this topic to some degree on one of our early, early podcasts when Massimo Pigliucci was on with us. And basically, our position is that we cannot know, basically, if we live in a purely materialistic or naturalistic universe, because any hypothesis that deals with something outside of the natural world, that deals with the supernatural, cannot be investigated scientifically.

P: By definition.

S: By definition. Now this is where—not by choice. Some people have said, well, we choose to limit ourselves to the natural and to leave out the supernatural. It's not a choice; it's by necessity. The scientific methodology, empiricism, requires that, because supernatural causes, causes that are outside of nature, cannot be held to any kind of laws or any kind of restrictions. The best example is God, you know, does God exist or not exist? Well, that's not really a scientific question. If you define God as an all-powerful being that lies outside of the laws of our universe, you can never use the laws of the universe to prove that he doesn't exist. So you can never use any kind of empiricism or scientific method because whatever outcome of any experiment or observation you choose to make, you can always say, "well, God intended it to be that way." There's absolutely no constraint you can put on it.

P: Gods and deities are a matter of faith and that is not our bailiwick.

S: That's right. So you could say that questions that are outside of the realm of science are properly dealt with as matters of faith, and basically meaning that they're not knowable. You can only just have an arbitrary personal or subjective decision about those, but there is no sort of empiricism that you could bring to bear, and therefore, all we say is that that's outside the realm of science. It's outside the realm of scientific skepticism. It's important to define it as such, but we don't specifically deal with it. Honestly, we don't care what people believe. What we care about is the processes of logic and science. However, I think where people get confused is they say, "well, so you don't deal with quote-unquote 'religion'". And we clearly do deal with religion and with religious topics. We deal with creationism, for example; it's hard to get us to stop talking about creationism. But we deal with religion to the extent that it intrudes upon science.

P: Right. When it crosses the line.

S: Right. So if you say you can scientifically prove the existence of God; well, you're in the realm of science. Then we can address whatever arguments you're making that are within the scientific realm. If you say you have faith in God; well, good for you. What could you say about that? You can't disprove someone's arbitrary faith. So we do deal with religious topics, and fortunately, modern religions freely trample on science and logic, so it's not like we have to restrict ourselves in any way. We also... the other questions that come up—we deal with politics or with sociological questions, and again, because this is our interests, this is where we think our talents lie, we like to restrict our topics to ones that have some kind of scientific angle. Where politics intersects science, we'll talk about that. But not purely—

R: Yeah, for politics in general, I've seen skeptics just tear each others' throats out, because it's always, "you know, you're not being skeptical enough about X or Y"—

P: It's true.

R: And you can't. You just can't.

P: It's true. Emotions intrude into all of this.

S: And in my logical fallacy article, I talk about this a little bit too, that there are some questions that require a value judgment. Right? And whenever you have to make a value judgment, then you're outside of the realm of pure empiricism or objectivity. And those questions are inherently irresolvable, 'cause it comes down to some kind of personal choice that you make, some kind of personal judgement that you make. What things do you value in your life? So we don't deal specifically with those issues, and that's very much the realm of politics; you know, politics is about making those value judgments. We feel that politics should be informed by science, and that politics should not intrude upon science, and to that extent, we do talk about it. I know Chris Mooney, who was on our show—again, he wrote the book The Republican War on Science—he defines his realm very much as the intersection between politics and science. And again, those are issues that we address as well.

P: In our own country, I wouldn't personally limit it to the Republican party. Our entire government is shockingly lacking in scientifically literate people.

S: Right. I was just giving that example because he was on our show, but you're right. I mean, every—if you have a political agenda, or a sociological agenda, or a religious agenda, chances are you're going to put that ahead of logic and evidence, ahead of science. And if the social structures are such that you have the power to do so, you'll probably oppress the process of science. And that's... we feel that that is our bailiwick, as you put it, that whenever that happens, whenever anything intrudes upon science, that is a topic that we will happily discuss.

P: Well, you know, we discuss these other topics, by the way: faith, politics, very passionately. We just don't do it when we're wearing our skeptical hats and certainly not during The Skeptics' Guide to the Universe.

S: Right, right. Of course, personally, we have political opinions, etc. Just not part of the show. As interesting as they may be. So, that should address those questions of, you know, we don't deal specifically with faith; we don't deal specifically with politics, but they copiously intrude upon science, and whenever they do, we're there. Anybody have any other observations they'd like to make about that before I segue to another topic? So let's move on to Science or Fiction.

Science or Fiction (51:50)

S: The Skeptics' Guide to the Universe is produced by the New England Skeptical Society. For information on this and other podcasts, please visit our website at www.theskepticsguide.org. Please send us your questions, suggestions, and other feedback; you can use the "Contact Us" page on our website, or you can send us an email to info@theskepticsguide.org. 'Theorem' is produced by Kineto and is used with permission.

References


Navi-previous.png Back to top of page Navi-next.png