SGU Episode 379: Difference between revisions

From SGUTranscripts
Jump to navigation Jump to search
m (Add link to October 20)
(updating outro1 to 301)
 
(2 intermediate revisions by one other user not shown)
Line 2: Line 2:
|transcription          =  
|transcription          =  
|proof-reading          = y
|proof-reading          = y
|formatting            = y
|links                  = y
|links                  = y
|Today I Learned list  = y
|Today I Learned list  = y
Line 9: Line 8:
|}}
|}}
{{InfoBox  
{{InfoBox  
|episodeTitle  = SGU Episode 379
|episodeNum    = 379
|episodeDate    = 20<sup>th</sup> October 2012 <!-- broadcast date -->
|episodeDate    = 20<sup>th</sup> October 2012
|episodeIcon    = File:Geoglyph-russian2.jpg         <!-- use "File:" and file name for image on show notes page-->
|episodeIcon    = File:Geoglyph-russian2.jpg
|previous      =                          <!-- not required, automates to previous episode -->
|rebecca        = y
|next          =                        <!-- not required, automates to next episode -->
|bob            = y
|rebecca        = y                         <!-- leave blank if absent -->
|jay            = y
|bob            = y                         <!-- leave blank if absent -->
|evan          = y
|jay            = y                         <!-- leave blank if absent -->
|guest1        = JIS: [http://en.wikipedia.org/wiki/Jamy_Ian_Swiss Jamy Ian Swiss]
|evan          = y                         <!-- leave blank if absent -->
|perry          =                          <!-- leave blank if absent -->
|guest1        = JIS: [http://en.wikipedia.org/wiki/Jamy_Ian_Swiss Jamy Ian Swiss]           <!-- leave blank if no guest -->
|guest2        =                          <!-- leave blank if no second guest -->
|guest3        =                          <!-- leave blank if no third guest -->
|downloadLink  = http://media.libsyn.com/media/skepticsguide/skepticast2012-10-20.mp3
|downloadLink  = http://media.libsyn.com/media/skepticsguide/skepticast2012-10-20.mp3
|notesLink      = http://www.theskepticsguide.org/archive/podcastinfo.aspx?mid=1&pid=379
|forumLink      = http://sguforums.com/index.php/topic,43709.0.html
|forumLink      = http://sguforums.com/index.php/topic,43709.0.html
|qowText        = You can do magic with science, but you can't do science with magic.
|qowText        = You can do magic with science, but you can't do science with magic.
|qowAuthor      = Erika Dunning<br>([http://en.wikipedia.org/wiki/Brian_Dunning_%28author%29 Brian Dunning's] daughter)<!-- add author and link -->
|qowAuthor      = Erika Dunning<br>([http://en.wikipedia.org/wiki/Brian_Dunning_%28author%29 Brian Dunning's] daughter)
|}}
|}}


Line 1,129: Line 1,122:
S: And until next week, this is your Skeptics' Guide to the Universe.
S: And until next week, this is your Skeptics' Guide to the Universe.


{{Outro1}}
{{Outro301}}


== References ==
== References ==

Latest revision as of 12:48, 27 April 2020

  Emblem-pen-orange.png This episode needs: proofreading, links, 'Today I Learned' list, categories, segment redirects.
Please help out by contributing!
How to Contribute

SGU Episode 379
20th October 2012
Geoglyph-russian2.jpg
(brief caption for the episode icon)

SGU 378                      SGU 380

Skeptical Rogues
S: Steven Novella

B: Bob Novella

R: Rebecca Watson

J: Jay Novella

E: Evan Bernstein

Guest

JIS: Jamy Ian Swiss

Quote of the Week

You can do magic with science, but you can't do science with magic.

Erika Dunning
(Brian Dunning's daughter)

Links
Download Podcast
Show Notes
Forum Discussion


Introduction[edit]

You're listening to the Skeptics' Guide to the Universe, your escape to reality.

S: Hello and welcome to the Skeptics' Guide to the Universe. Today is Monday, October 15th, 2012, and this is your host, Steven Novella. Joining me this week are Bob Novella.

B: Hey, everybody.

S: Rebecca Watson.

R: Hello, everyone.

S: Jay Novella.

J: Hey, guys.

S: And Evan Bernstein.

E: Oh, good evening, my friends. How are all of you?

J: Good, what's up?

R: Super!

S: Quite well.

This Day in Skepticism (0:31)[edit]

  • October 20, 1970: Norman Borlaug wins Nobel Peace prize for Green Revolution

R: So, the day that this podcast goes out, October 20th, marks a very important date in science history. So in 1970, a scientist received the Nobel Peace Prize. Can any of you guess who it was?

E: A scientist received the Nobel 'Peace' Prize.

S: Was that Linus Pauling, right?

R: Nope.

S: He got the Peace Prize.

R: Any other guesses?

J: I have no idea.

E: 1970.

J: Isaac Newton.

R: (laughs) They don't award them posthumously, so... no.

E: Yeah, right.

R: Okay, time is up.

E: (disappointed) Aww!

R: On October 20th, 1970, the Nobel Peace Prize went to Norman Borlaug.

E: Yes!

B: Oh!

R: For his contribution to the 'green revolution'...

B: Norman!

R: Which increased grain production throughout the third world. Yeah, he is responsible for possibly saving millions of lives.

B: Oh, how awesome is that? What a legacy!

E: Borlaug?

J: Cool!

R: Yeah, just for coming up with ways to grow crops that was more efficient, that produced more yields, particularly in Pakistan and India, during times when they had severe shortages of food, and even drops from the US weren't enough to protect people from starvation, so, yeah, his research went into saving many, many people. So, yeah, he has the Nobel Peace Prize, he has the Presidential Medal of Freedom, the Congressional Gold Medal, the Padma Vibhushan, India's second-highest civilian honor, and he's in the United States National Wrestling Hall of Fame!

B: Wrestling!? (laughs) What!? Didn't see that coming!

R: Yeah.

E: Wrestling with tough ideas!

J: What has he got? What'd he do?

R: He was a wrestler.

B: Oh my god!

R: I don't know, he was really into it.

B: What a Renaissance Man.

R: Yeah, in high school, apparently, he played several sports, but he was particularly into wrestling, and he was on the team at University of Minnesota. He was in the Big Ten semifinals, he introduced the sport to Minnesota high schools by putting on exhibition matches around the state. So, Wrestling Hall of Fame, in Stillwater, Oklahoma. Who knew?

J: That's awesome!

E: And the Peace Prize winner, cool!

R: Norman Borlaug.

S: And he lived to 95. It's a good run.

R: (agreeing) Mm-hm!

B: Oh, wow!

News Items[edit]

Nobel Prize in Chemistry (2:48)[edit]

S: Well, we have one Nobel science prize left over from last week that we didn't talk about, the Nobel Prize for 2012 in Chemistry. This one goes to two scientists, Robert Lefkowitz and Brian Kobilka, for their discovery and description of G-protein-coupled receptors. You guys familiar with that?

E: It's a rap artist!

R: Nope!

S: So, I mean, they're huge. G-protein-coupled receptors - they're present on -

B: They're really small.

S: On many cells, and they are responsible for cell signaling, essentially how cells can sense their environment and react to things like hormones. It's estimated that half of the drugs that are on the market have their effect through G-protein-coupled receptors.

E: That's a lot.

B: Wow!

S: That's a lot. Definitely a breakthrough in our understanding of cell physiology and biochemistry, so it's hard - it's one of those things where it's fundamental, it's not really the kind of thing that penetrates to public consciousness, cause it's kind of technical and wonky, you know, G-protein-coupled receptors.

E: Obscure.

S: But they're really fundamental to cell function and just - was a tremendous breakthrough that gave us a lot of - had a lot of applications. Now you take it for granted, we hear about them all the time.

B: Yeah!

S: You just take it for granted. This is how different drugs work, etc., how different signals work.

E: But they figured it out.

B: So when was this breakthrough?

S: Definitely worthwhile. So Lefkowitz started the research in 1968, using radioactivity to trace cells' receptors, and then Kobilka joined the team later and discovered the genes, the first G-protein-coupled receptor gene. Now there's something like over a thousand different genes, it's a huge family of genes. They control - these receptors are involved with perception of light, flavor, odor, response to adrenaline, histamine, dopamine, serotonin.

B: Flavor?

S: Yeah, obviously very fundamental to neurological function as well.

E: Do you think they stumbled on this accidentally, Steve, or do you think they were looking -

S: Oh no! He was looking for it. This is a very specific program of research that paid off very, very well.

B: So, what took so long to give them the prize?

S: I don't know, this is pretty par for the course for the Nobel Prize. They definitely like to wait a while to see the implications of researches - they have the luxury of giving it 20 years or so to really see how scientific discovery pays off.

R: Whether or not it's debunked.

E: (laugh) Yeah.

S: Yeah.

E: Or, say, whoops, this discovery causes mutations in all sorts of people, we shouldn't be tooling with this stuff.

S: Some monsterism.

DNA Half Life (5:39)[edit]

S: But there's one discovery, Rebecca, that probably will not be earning a Nobel prize: the discovery of the half-life of DNA.

R: Yeah, unfortunately, this discovery will only be earning the power generated by Michael Crichton's spinning corpse.

(laughter)

R: So, yes, paleogeneticists at University of Copenhagen and Murdoch University in Perth, Australia, looked into the DNA of leg bones belonging to three species of giant moas, which are those extinct birds that could disembowel you as soon as look at you, really awesome, impressive birds. And I think that the reason -

J: They're big?

R: Yeah, huge! Huge! Yeah, they reached about twelve feet in height, apparently, and they could weight up to about 500 pounds.

J: Wow, that's awesome!

B: Big, big boys!

R: Yeah, impressive birds. But the interesting thing about them is that they covered a decent swath of time that allowed researchers to collect 158 leg bones and examine the DNA to determine the half-life of DNA. And all of these bones had been found in identical conditions, so they were all at a temperature of 13.1 degrees Celsius for instance, they were all within five kilometres of one another. Everything was the same, pretty much, except for how long ago they actually died. So what the researchers found was that the DNA has a half-life of about 521 years. And that's more or less what it is. It's difficult to say for sure because even though they looked at a lot of different bones, they did only look at bones in a certain part of the world, so they don't really know for sure what bones would be like, say, covered in permafrost, or something like that. But they do have a pretty high degree of confidence that even in a bone at the ideal preservation temperature of -5 degrees Celcius, the DNA in it would be destroyed completely at a maximum of 6.8 million years.

B: Therefore...

R: And so, what journalists and other people have immediately jumped to realizing is that Jurassic Park could never happen, pretty much.

E: Except the creationists, they think it could.

R: (laughs) Right, right. Creationist Jurassic Park could still happen, but it'd be super-crappy, because the dinosaurs would all be vegetarians, blah blah blah. There's definitely no chance that any DNA would be left after 65 million years, considering that right now, they're estimating that it wouldn't make it 6.8 million years.

B: Even if we used lots of frog DNA to help out?

R: Yeah, I think... I think you would just end up with frogs, by the time you replaced... (laughs)

B: Ninety-nine point nine nine percent frogs!

R: Exactly, yeah. So it's sad news -

B: That sucks!

R: Yeah. And there are other factors that can make it even worse, apparently. Like how the bones are stored, after they've been excavated, the chemistry of the soil, and they say that even the time of year when the animal died might factor into how long it takes for their DNA to break down.

E: How come only now we're discovering what the half-life of DNA is? We weren't able to -

B: I think it was the - it was that moa find was key, right Rebecca? I mean, it was just the perfect find in terms of how consistent they were, how many there were, and the time frame - I think that was the big find, which -

R: Yeah, I would imagine that it's difficult to find a huge amount of bones that you can have such a spread of time. Six hundred years to eight thousand years, but still with the same soil conditions, within the same distance, so yeah, I guess it's a pretty important find, and it would be nice to find something else like that in a different part of the world, but I don't know what the chances of that are.

S: One thing I wondered when I was reading this is, does this - I know they said even under ideal preservation temperature of -5 degrees Celsius, every single bond would be broken in 6.8 million years. But does that include every possible condition, specifically, in amber, where there is no oxygen, no air?

R: The article does talk about in amber, and how that doesn't protect it because apparently a huge problem is reaction with water. But I don't know if amber perfectly protects it from that, because there's still water in the body that would damage it, you'd think. So I don't know. Oh, actually, there is a quote. Simon Ho, I computational evolutionary biologist at University of Sydney, said "This confirms the widely held suspicion that claims of DNA from dinosaurs and ancient insects trapped in amber are incorrect."

E: Too bad.

S: I wonder why it wouldn't though, since water seems to be so predictive of degredation rate.

R: Yeah, but there's water in the body, so maybe that would be enough, don't you think? Particularly if -

B: What's the water content of amber, too?

R: And if they - yeah -

S: So we have to mummify it, then encase it in amber.

R: Yeah. So what you need to do is go back in time, mummify a dinosaur, come on back.

S: Encase him in amber, and then put him in -5 degrees Celsius.

R: Yep.

E: Then, we'd have something.

J: (disappointed) Are we never going to be able to resurrect a dinosaur?

B: Not looking good, Jay.

S: It's hard to say never. What if we can take, say, a bird, and reverse -

B: De-evolve it.

S: Yeah, reverse all of the mutations that occurred - well, we got the dino-chicken, right?

E: Yep.

S: Remember that?

R: Wait, what was that? I don't remember that.

S: The dino-chicken!

R: Don't just say it again, like that's going to help!

(laughter)

R: (sarcasm) Oh, the dino-chicken, right!

S: Tyrannosaurus cluck!

B: The DC!

R: Oh!

J: Tyrannosaurus cluck!?

R: Tyrannosaurus cluck, I remember!

(laughter)

S: Research teams are doing that, they are doing mutations to reverse some of the changes that led from dinosaurs to birds, so you end up with birds with reptilian dinosaurian features.

J: That's pretty cool.

E: Well, that's something, it's not exactly recreating a dinosaur though.

S: No. It's something though.

R: I mean, you could make a theme park that could then go horribly wrong and result in terror, so...

S: You could.

E: Yeah, but after the slaughter it -

B: Aww, that's a stupid idea, Rebecca, it'll never sell.

Simulated Universe (12:15)[edit]

S: All right, well it doesn't really matter cause the whole universe is a computer simulation anyway, right, Jay?

B: Oh, nice segway!

E: Someone tap the side of it, it's glitching again!

B: Find the old program and run it.

J: Well, Steve, this is actually freakishly interesting. Uhm, I was totally absorbed and blown away by learning about this and I actually even, uh, contacted our friend Brian Weck, ...

S: Oh, cool!

J: ... who, who lives in London now and he was helping me figure this stuff out, I got to ask him a couple of questions about it, so let me start by talking about a few things to give the background here. The universe at its most basic fundamental level is explained by quantum chromo-dynamics or QCD. This is a theory that describes the strong nuclear force and how it binds quarks and gluons into protons and neutrons and how these form a nucleus. So, that force actually is interacting on these particles in a very, very strong way and it overcomes the, uh, strong magnetic force because it's so powerful at that, at that very close range and it controls these particles. And the question is: .. the question is: what would we be able to learn if we could simulate these incredibly small interactions in a computer? And the scientists that are working on this wanted to see what kind of complexities arise out of that and if we're able to do that. They also think that a true simulation of physics on the level of .. on this level would, in essence, be equal to simulating the universe itself. Which, I find pretty mind-blowing. That thought, just thinking about the idea that we would be able to create a simulation that's so accurate, that it would be, in essence, a small portion of the universe, all by itself.

B: Whoa!

J: So far, because of how complex the physics are...

B: Assuming they're fundamental, but... okay...

J: And at the size that they're talking about, they've only been able to simulate reality in a computer on the scale of a few femtometers across. And a femtometer is 10 to the negative 15 meters. They claim that at this scale the simulation is indistinguishable from the real thing, which is awesome. And of course, this being limited to reality as far as we can understand it, right, so like - as far as the human mind can perceive these things, they think that it's that accurate, and that close to reality.

R: Yeah, that's what they said about Avatar, and I wasn't really convinced.

J: (laughs)

E: Did they use the term "femtometer"?

R: I think they might have, actually.

J: No. You know what I hate? I saw somebody ragging on that movie and they showed, like, the ten movies that Avatar ripped off.

R: (laughs)

B: Oh, jeez!

J: And it totally ruins the movie! Cause they're like, Pocahontas and, you know, Last of the Mohicans, like, noooo!

R: (laughs)

J: All right, so now, guys, imagine as computer processing power increases as Moore's Law states, we will most definitely be able to simulate something the size of the human cell, someday, and according to the physicists, this simulated human cell and everything it does will be indistinguishable from the real thing, hopefully. This thinking has led the scientists to consider the idea that all of reality could be a simulation on an incredibly powerful computer, right? We've talked about this many times before. This is the first time that the idea makes sense to me, because the simulation starts on the scale of subatomic particles, and now the question arises, can we know if we're in a simulation, and now this is where the real meat starts to come in. So -

S: Before we get to that, Jay...

B: Meaty!

S: Philosopher David Kyle Johnson discusses on Rationally Speaking, Massimo's podcast, and wrote some articles on their blog, which I thought was interesting and tied into this. The probability that we are currently living in a simulation, from a philosophical point of view, what do you think?

J: Oh, it's going to be either 0 or 100 percent.

R: Some bullshit number that doesn't have any relation to real life?

E: Fifty percent?

S: (laughs)

J: No, it's overwhelmingly likely.

S: A near certainty.

J: Yeah.

E: A near certainty.

J: I'll tell you right now that I don't believe it, Steve, because I'm nowhere near as muscular as I would've been, and I would have an incredible singing voice... There's no way that someone would make a simulation and, like, gimp me the way I've been gimped.

E: It doesn't mean someone made it, right? It just means the universe is a simulation, it's just its nature, I would think! Does it have to even be created?

S: So here's the logic. How many universes can we inhabit that are real? The answer is 1. How many universes can we inhabit that are simulations? Billions!

B: Quintillions!

S: So it's billions to one that this - so the only variable is, can we one day simulate a universe? If we can do it, and therefore it's possible, then chances are overwhelming that this universe is one of the billions of simulated universes rather than the one real universe.

E: Well, as long as they keep the program going, I got no problem with that!

S: But - I don't know, there's something wrong with that line of argument that I can't just put my finger on.

R: Yeah, it's always seemed to me like one of those trick questions about...

S: Yeah.

R: You end up with one extra dollar, where did the dollar come from?

(laughter)

E: I love that one!

J: You've got a billion extra universes here, what's the problem?

(laughter)

B: Steve, the problem is, the idea that somebody can turn a switch, end the simulation, and end all of existence, yeah, that's annoying as hell, but if you're - but otherwise, I mean - it would be cool and we'd talk about it for a long time, but really, what would we really be doing differently, if we found that out?

R: We would try to hack the program!

E: Not a damn thing! Why?

J: That's right, Bob. Hackers unite, baby, we would...

S: All right, here's another question. Here's a philosophical question. What's the difference between a simulated universe and a quote-unquote "real" universe, if that simulation includes simulating fundamental particles all the way down?

J: When you're the ant in the ant farm, there's no difference, you don't know the difference.

E: Say there's no difference.

B: Quacks like a duck, that's right!

R: Well, yeah, but that's because your question included the most interesting part, which is - you said, if it includes all the way down to the particles, all the laws, but -

S: That's what Jay said!

R: But what - what I'm saying - the interesting thing though, to me, about the idea of living in a simulated universe, is figuring out the motivations of whatever started the simulation.

B: Right. That and getting the cheat codes!

E: Yeah, you're coming - you're walking towards the...

S: Any Easter eggs.

E: You're walking towards the God question, Rebecca.

R: Yeah, well no, I mean that's exactly what it is, but in this case, if we knew for a fact that the universe was simulated, then we know that the simulation started somehow.

E: Sure, what if the simulation -

S: It would raise all kinds of interesting possibilities, you know... cause you could certainly program an afterlife into the simulation.

R: Right.

B: Yeah... I was thinking about that. But how about this: you, at some point, you're running a simulation, and you could have - say, this being that has the simulation, and then your simulation can also run a simulation, which is what we would be doing if we were a simulation and running the simulation. What if one of these simulations created, say reached a singularity moment, a stage of singularity in their evolution, and the power consumption went so high that it just fried the computer! And the simulation ends when you reach a singularity. I mean, how ironic would that be!

J: Yeah, it's like that Sim game, when people achieve atomic power or atomic weapons, it's over, that's it, the game ends.

B: Right!

S: So, Bob, if there are billions of simulations, and you can make a simulation within a simulation, then couldn't there be billions of nestled simulations?

B: Yeah, yeah!

R: Well, I think that that's what the story was we talked about last time. That was the idea... (inaudible) The assumption was that once you make a simulation that exactly mimics your own universe, then at some point, someone's going to make a simulation of that universe, and you'll have these nested Inception-like universes, and that's why that philosopher was arguing that we definitely live in a simulation because that means that there would be an infinite number of simulations, and so, and only one real universe, and so we would be living in one of the...

J: I'd like to say something.

B: All right, Jay, how would we -

S: Jay, how do we know, Jay.

J: Wait, wait, wait! If we're in a simulation, and, I don't know, hopefully the person or the thing that made the simulation is listening right now, which I doubt they are...

E: Wink, wink, nod, nod!

J: Could you please, like, let me sleep better, and help me lose like ten pounds, please!

R: You are literally praying to God now!

J: (laughs) I know!

B: Oh my god!

J: But, this is the first time where it seems like there might even be a possibility that somebody's listening at least, right?

R: No!

E: No!

R: Cause even if they make this simulation, they're not going to be - there's a billion - six billion of us!

E: Or I think they've clearly lost control of it, maybe they have tried to turn it off, and they've failed, cause this universe has trumped that, effectively found a way to keep on going, despite the efforts of whatever is trying to either shut it down or change it or manipulate it.

J: Okay, so... Silas Beane, and his team of researchers at the University of Bonn in Germany.

R: Sorry, is he from a Harper Lee novel?

J: (laughs) They think that they can maybe, in a few scenarios, find evidence that we're in a simulation, or not, okay?

E: All right.

J: If we were in a simulation, the computer simulating us would be working in discrete steps, just like any computer would. And what this means is it wouldn't be seamless, kind of like pixels in a picture if you zoom far enough in. These discrete steps could also be thought of like a sample rate in music, right? So when you sample music, you're listening, it's recording a section of it, then it records another section of it, it's not seamless.

S: Isn't that the Planck length?

J: Yeah, I think - I was thinking about that, as I was going through this, I remembered us talking about it, and I read a little bit about it. I couldn't find a parallel, or connection, but in essence what Steve's saying is that there - at its absolute fundamental level, there is something that is the smallest that something can get, right?

S: Yeah, the Planck length, that's the pixel of the universe.

B: Yeah, it's the Planck length, essentially the idea is that length has no meaning smaller than the Planck length, like a pixel on a screen, you can't talk about a half a pixel, it's meaningless.

E: Undefineable.

B: Right. There's also an equivalent in terms of time, as well, which is called the chronon, so I think that's what they're getting at.

J: Right, so keep in mind that a simulation would have to be built on a step above the smallest level that it could be, right? Or a number of steps.

S: Why?

J: This is what - Steve, this is the research, I'm just telling you what they're talking about. So they surmise that if you drilled down far enough, that they might be able to detect if the laws of physics are being limited by these discrete steps, that they consider to be like a three-dimensional grid or a lattice that advances in steps of time, say, right? So if you just visualize a three-dimensional lattice, and the structure of reality is built into that framework, right? So this is all with what they're thinking about and how they're going to figure out that there might be a problem. This means that the simulation has a structure to it that at its most basic level might be detectable. Does the grid or lattice, if it's there, limit or skew the way high-energy processes in physics should happen? So imagine that the lattice is a simulation, and it's not actually small enough to truly mimic the infinitesimals of subatomic particles, and detectable flaws are revealed when it imposes any limitations that it would inherently have because it's a three-D model, right? And there are some important caveats to the study. One problem is that the computer lattice may be constructed in an entirely different way that Beane and his team imagined, and would render it undetectable by the way they're looking. Another is if it's - if the size is really small, if it's too small, it's going to be undetectable as well, because of the way that they were describing how they would be able to pick up in these high-energy exchanges, and how they're being limited by the lattice. There could be a scenario where if it gets too small, they can't pick it up, cause they can't think of any way to see it, when it's that small. The good news is, though, that this is not a waste of time for a number of reasons. One, first of all, yes it would be interesting and horrifying if we found out that we're in a simulation. But, two, they are building these computer models, and they are simulating very, very small pieces of a virtual reality, and they are increasing this in size as they go on, and the physics behind these things are so incredibly complicated, that's why it can only be done in such a very small amount of space. But as computer power increases, we're going to be able to increase the size of it, and we'll be able to learn a lot about physics by simulating it.

S: I see two massive conceptual flaws with that line of reasoning. One is, why would the discreteness of the simulation be different than the discreteness of this universe? Wouldn't it just be the Planck length and the chronon?

J: I don't know, Steve.

S: That's... why...

B: But then would it be simulation? Wouldn't that just be the universe, then?

S: Well, yeah, that's kind of what I was saying before.

J: Steve, I don't know!

S: But why... why would you simulate a universe that has more resolution than you're able to simulate?

J: Because in order to build a simulation, Steve, it can't be at the most fundamental level, it has to... how could it?

S: Why not?

J: How could it?

S: Listen to what I'm saying. If our universe is a simulation, it's embedded in a bigger universe that has a finer grain, but the simulation - the resolution that we see in our simulated universe is the resolution of the simulated universe.

J: Oh, I see what you're saying.

B: Right.

S: Right? Why would that be different? The other massive flaw is, if this universe is simulated, don't you think the programming would be sophisticated enough to adjust any kind of experiment that any simulated beings do in the simulated universe to give the correct answer and not reveal the simulated nature of the universe?

B: I don't think you could assume the knowledge or motivations of the programmer. Maybe they want... they want people or beings to find it out at some point in their development. That would be a cool little thing.

S: Is that the test?

B: That's the Easter egg, right there, it's like, if you could find this out...

R: So it's not that have to love him or her unconditionally, or else we go to hell?

S: We have to discover the simulated nature of our universe. Maybe that's the bet they have going, how long will it take to figure out they're living in simulation? That's the endgame.

J: Guys, imagine if it's in the distant future, whatever, a few hundred years now, and you're able to do a simulation in your computer. And the creatures that you've created in your computer start to worship you.

R: Yeah, there was a whole Futurama episode about that.

E: Oh, yeah, there was, wasn't there?

B: I could deal with that.

R: Bender became God.

E: Right.

B: God!

E: And then they launched atomic weapons, destroyed themselves. Very sad. Game over.

S: By the way, your simulation worshipping you is also the plot of Tron.

E: Yeah, it is, isn't it.

S: Yeah.

J: Yep, that's true.

S: Well, we'll never sort this one out.

R: Not with that attitude!

E: And if we do, the creators'll never let you know it, so...

S: Well, that's why.

B: We may have already figured this out, Steve.

Supersonic Jump (27:41)[edit]

S: Bob.

B: Yo.

S: How's the super-jump going, the supersonic jump going? What happened?

B: It's going very, very well, thank you. I think we can now add...

R: Still going? (laughs)

B: (laughs) ...supersonic skydiving to the Guinness Book of World Records, this is really an amazing feat. "Fearless" Felix Baumgartner, on Sunday, October 14th, became the first person to break the speed of sound in free-fall without any airplane or anything around him, just, pretty much him in a space suit.

E: Well, he had his suit, yeah.

B: So he reached the amazing and preliminary estimate of 833 miles per hour, or 1342 kilometers per hour, or Mach 1.24, so he was clearly supersonic. This effort was called the Red Bull Stratos mission, and they've been working towards this goal since 2003. I didn't know they'd been working on it for quite that long.

E: Wow!

B: It just goes to show what an effort this was. He leaped from his capsule attached to a balloon at 128 thousand feet, approximately, or about 24 miles, 39 kilometers. That's four times the height of most passenger jets, that's really, really, up there. And he also broke -

E: They're calling that the "edge of space", Bob, is that - that's a misnomer -

B: Yeah, I know, I'm getting there, dude, I'm getting there.

E: Okay, all right.

B: He also broke other records: the highest departure from a platform, highest manned balloon flight, which is kind of related, highest free-fall without a drogue parachute to slow down, which is somewhat dangerous - when I jumped from ten thousand feet (which is almost as cool as what he did), every parachute pretty much got a drogue chute, which kind of slows you down and orients you right so that then - it kind of pulls the main chute out. He didn't even have one of those. He was in the air, he was flying, he was sailing down for 20 minutes, not in free-fall but the whole duration was 20 minutes, and it only took him about 40 seconds to reach that top speed. That was some pretty wicked acceleration. He's quoted as saying, "It's like swimming without touching the water, and it's hard because every time it turns you around, you have to figure out what to do. So I was sticking my arm out, and then it became worse." He said, "I had a lot of pressure in my head, but I didn't feel like I was passing out. I was still feeling okay. I thought, I can handle this situation, and I did." And he obviously did. I was also wondering about - did you guys wonder about the sonic boom?

R: Yeah.

E: I did, yeah.

B: Regarding that, he said he didn't even feel a sonic boom because he was so busy trying to stabilize himself.

E: Yeah, that's right.

B: And in fact, he was very busy because for like 35 seconds he was apparently spinning out of control.

R: Yeah.

B: They call it the death spin, and this really could've been - this, I think, was one of their biggest fears - he could've been spinning so fast that it would just - forget it, he could have been injured or died just from that. What's weird, though, is that, if you watch him jump, he looks to - the first ten seconds that I saw of him going down, he looked perfectly oriented, and he didn't look like he was spinning. I guess he must have started spinning soon after that.

E: Yeah, the shot from his helmet cam, you can see it, you're exactly right, Bob.

B: Yeah.

E: It starts off kind of easy, and then, there goes the spinning.

B: Yeah.

J: Wasn't it amazing, he literally disappeared into the - he got so small from the ship that brought him up.

E: Yeah.

B: So fast.

J: You know, you're looking at - he drops and he just turns into a pixel, and then he's gone.

B: Yep. He said the spin was a lot harder than he thought it was going to be. I thought that was a weird quote, because he jumped at 95 thousand feet, you'd think the spinning would be, you know, nasty at 95 thousand as 128, but I guess it was a lot harder. I do like, though, how he said that he didn't do this just for the record, he did it for science. Doctors claim that the data from the skydive will break new ground and of course, NASA's going to be all over a lot of this too, for new space suit designs, and that's also going to benefit a lot as well. Even the balloon was really cool. This thing was like 550 feet tall, right, 55 storeys, and it had a capacity of 30 million cubic feet. But it was only about 40% the thickness of a Ziploc bag. And, what was a little weird, though, 40%, okay, that's pretty thin. But they compared that to three red blood cells placed edge to edge.

R: What!?

B: Does that sound - I mean, yeah, that doesn't -

R: Ziploc bags are tiny! That's what I got from that!

B: Okay. What I got from that is I think, maybe, it's a little more than three, but - so, it's very fragile, as you could imagine. Actually, they tried to launch this thing - or no, not launch it - yeah, they tried to launch a balloon last week, or the week before he successfully did it, and there was a wind gust, apparently, that caused the balloon to hit the ground, and it destroyed it. It just totally destroyed it. Luckily, they had a backup, otherwise they would've been in deep crap. One thing, though, Evan, that I noticed - almost every article I read claimed that he jumped from the edge of space.

E: (buzzer)

B: Now, I know the edge of space is subjective, but I think they're taking a little bit too much dramatic license, and I feel like being a little bit pend - pedantic - (laughs) I almost said "pendantic" - pedantic, but that's okay. There's no real edge, of course. The atmosphere gets slowly thinner and thinner as you go up in altitude, so - but there is some basis to declare, yes, space pretty much starts right here. Now, for comparison, he jumped at 39 kilometers. The United States Air Force will give anybody astronaut wings - well, not anybody - but they will give you astronaut wings if you fly above 80.5 kilometers. Why did they pick that? I don't know why they picked that, but according to the USAF, that's good enough to make you an astronaut. But even more official than that is what - I didn't know about this - it's called the Kármán line. You guys ever hear about the Kármán line?

E: I've not heard that.

J: No. What is that?

B: That's 62 miles up, or 100 kilometers above sea level. Now that's a suspciously round number, but Theodore von Kármán is a mathematician, physicist, and aerospace engineer. He came up with this demarcation for a very cool reason. He says that at this distance above sea level, apparently, aircraft cannot maintain their altitude through conventional lift, and they have to essentially be in orbit, just as a satellite would. And I think that's just a really great idea, that's a good arbitrary place to make when space starts. And it's the official boundary of space by the IAF, the International Aeronautic Federation, which governs all international laws on aeronautics and space exploration. So, yeah, that's fairly authoritative right there, but if you really want to be anal about it, I think you need to go to the uppermost section of the top layer of our atmosphere. That's the exosphere. It extends all the way to ten thousand kilometers or 6200 miles above sea level. In fact, from what I can gather, most scientists consider this to be the really, really official boundary between the atmosphere of Earth and true interplanetary space. So, all I've got to say to Felix is, you have a long way to go, baby! Before you're really at the edge of space.

R: Harsh!

S: But at that altitude, where he was, the atmospheric pressure was only 2% of sea level.

B: Yeah, the vast majority of the atmosphere was well below him, so yeah, there's lots of different ways to look at it.

S: So that - you need to be in a space suit!

B: Yeah, I know! Yeah, you could definitely make the claim, but I like the Kármán line, I think that's pretty good, I mean he was -

S: So you could still say it was the edge of space, it's just a very long edge!

B: Yeah, very thick edge!

(laughter)

E: One of the edges of space.

R: You know what I found most interesting was not the records he's set but the record he didn't set, which was longest free-fall. Considering that he - nobody has ever jumped from a higher place, he didn't free-fall the longest. He must've been trucking... like...

B: Yeah. And he pulled the chute, I read, at eight thousand feet, which is a nice, relatively low altitude, especially compared to where he was, so yeah, I was kind of surprised and disappointed, like, really? He didn't have the longest free-fall? But, yeah, I guess that's got to be related to just how fast he was flying through the atmosphere.

S: Well, congratulations! That is cool. Takes guts to do something like that.

E: And he's retired now. No more jumping for Felix.

R: I should hope so.

B: Oh yeah, how do you -

S: That's a good way to end it.

B: He doesn't need to improve that, that'll probably stand for a while, I would say. Maybe not the 50 years that the first - that the record that he broke, but it could be a while.

Russian Geoglyph (36:10)[edit]

S: Evan, do you think he could see some geoglyphs from up there?

E: No doubt he could see geoglyphs from up there, a whole bunch of 'em.

B: You've been practicing your segues, Steve.

E: Oh, those geoglyphs.

R: And yet he still can't do a segue so smooth we won't all point it out to him.

B: (laughing) Yeah, right.

E: (laughing) We've been at this too long, right? A huge geoglyph in the shape of an elk or a deer has been discovered in Russia, in the Ural Mountains, north of Kazakhstan. Archeologists are saying it may predate Peru's famous Nazca Lines by thousands of years.

B: Oh, wow.

E: A geoglyph is a large design produced on the ground, typically shaped using rocks or stone fragments. And the designs are relatively simple in the sense that they're just the outlines of either animals or humans, kind of doing something. They're not all that extravagant but they are very, very impressive. Now this elk, or deer, whichever you prefer, stretches for about 900 feet at its farthest points, northwest to southeast, and that's about two American football fields, for those of you outside America. The figure faces north and would have been visible from a nearby ridge, which is interesting, because you didn't necessarily, I guess, have to be, have some kind of bird's eye view to see exactly what was going on. Visible from a nearby ridge, I found that interesting. Now this particular geoglyph was discovered when someone found it using Google Earth. An old image dating back to 2007. Alexander Shestakov was the one who discovered this. And he alerted researchers who went out on a mission. They sent a hydroplane and a paraglider to survey the structure and sure enough, there it was. These findings were detailed in the journal called Antiquity. And they were written by Stanislav Grigoriev, of the Russian Academy of Sciences Institute of History & Archaeology, and Nikolai Menshenin, of the State Centre for Monument Protection. The fieldwork that these researchers performed at the site this past summer suggested that the geoglyph might be the product of a megalithic culture. Now, European megalithic culture was a prehistoric culture that stretched from the Iberian peninsula in the south, and Sweden and the Orkney Islands to the north, and stretched from the Baltic all the way to the Atlantic. So it was a pretty wide civilization at the time, or culture I should say. And among the finds from the excavations that they found were also these stone tools, about 40 of them, and they were made of quartzite, and they were found on the structure's surface. They were pickax tools called mattocks, which are useful for digging and chopping or perhaps extracting clay. And this style of stonework was lithic chipping that was used on those artifacts. It dates back to the Neolithic and Eneolithic times, which is 6th to 3rd millennia B.C. Right? So 6,000 B.C. That's pretty impressive. Whereas the Nazca Lines, we're talking estimates of 500-600B.C. So what we have here are the famed Nazca Lines, which we've talked about before on the show, and are familiar in skeptical circles. These are the ones in Peru, on the beaches of Peru. And which were discovered many, many years ago, and there was a lot of controversy and discussion as to how they could have possibly made, like an ancient culture basically, made these things without the benefit of having either something to go up in the air, flight, or help from another civilization more technologically advanced than ours. But these date even thousands of years prior to that. And there are other examples around the world that have been also recently discovered, say in the Middle East, which are also showing these kinds of geoglyphs. Okay, so what's skeptical about these and what does any of this have to do with skepticism. It was believed by some, such as Erich von Daniken, that their size and purpose speculate that visitors from other planets must have created or directed the project. It also suggested that perhaps by some that they had some sort, the Nazcas and these other cultures, had some sort of manned flight vehicles, balloons or whatnot, that were used, you know, so they could get up above the ground and actually kind of see and direct what was going on. But that's another theory, a pretty wild theory, that was, kind of got pushed off to the side and scientists realized, nope, that's not how they did it. It's been done before, just, Joe Nickell, in fact, has written papers, and a book, I believe, about the Nazcas and how they could have done it using just the technology of the age, without flight, without the assistance of aliens or any other such thing, and just using the tools of the time it was proven that it can be done.

S: Now this particular geoglyph is not that impressive looking. You've gotta really squint hard to see the elk.

R: I'd like to see you make a geoglyph.

B: Thousands of years ago.

S: Okay.

R: I didn't think you'd take me up on that.

S: I'll make a geoglyph.

E: I see what you're saying. You're right. It's got this sort of anteater nose to it, is that what you're . . .

S: Yeah, really elongated muzzle.

E: But aliens need not apply. Humans have been doing this for thousands of years, thank you very much.

Who's That Noisy? (41:38)[edit]

S: Well, Evan, it's time for "Who's That Noisy?"

E: Thank you, Steve. I'm gonna play for you last week's "Who's That Noisy?" SO here we go.

Woman: We just give a dose, a large dose, of green black walnut hull.

Man: And what does that do?

Woman: That kills the stages, larval stages of the fasciolopsis parasite called the intestinal fluke.

S: The intestinal fluke.

E: Yes, and parasites. So who talks about parasites in analyzing diseases and thinking that all of human disease is related to parasites? Who do we know that used to say that?

S: Hmmm. Name that quacky.

E: Could it be Hulda? Hulda Clark, perhaps?

S: Hulda Clark, yup.

J: Perhaps. (laughter)

S: I know I said this story, but I have to repeat it.

E: Please.

S: I got an email from a Hulda Clark devotee, who was criticizing the medical profession for making claims beyond the evidence. And overselling their knowledge and capability.

B: Wow.

S: And I had to point out to him that Hulda Clark's first book was called The Cure for All Cancer. (laughter) And her next book was The Cure for All Disease. I'm sorry, who's overselling their knowledge and capability, who?

E: I don't know if there's a bigger red flag in alternative medicine than blaming everything on one source. All disease. All cancer. All anything. That's about as big a red flag as you can wave.

S: You also have to point out now, the asterisk next to her name forever is, the woman who claimed to have the cure for all cancer died on September 3, 2009, of cancer. Multiple myeloma.

J: You can't fight it off forever, Steve, come on.

S: Yeah.

E: Yeah. Her pact with Satan ended years ago. (laughter) Correct answers were provided to us, but the person who guessed correctly first, from the message boards, Esther. She says "Dr. Hulda Clark?" And I answered, "Why, yes." Dr. Hulda Clark. Well done, Esther!

S: Good job. And what've you got for this week?

E: Here we go. Latest and greatest, fresh off the presses. Who's That Noisy?

A rumbling sound that goes on for about 12 seconds.

E: All right.

(overlapping comments)

S: . . . rumbly noise.

B: Is that Felix?

E: (laughing) Good guess, Bob. No, not Felix. Not Felix. I try not to do that. I try not to borrow noisies from the most current of news items that we're covering, so, that's a rare, rare, rare occasion, but, not a bad guess. And if you have a guess of your own, you'd like to submit it, it's info@theskepticsguide.org and our forums are sguforums.com. And we would love to hear from you. Good luck everyone.

S: Thanks, Evan.

Interview with Jamy Ian Swiss (44:37)[edit]


S: I'm sitting here at TAM 2012 with Jamy Ian Swiss. Jamy, welcome back to the Skeptics' Guide.

JIS: Great to be here. Always a pleasure.

E: Always.

S: So let's see, what shall we talk about?

E: Hmmm. The weather.

S: You gave what might be described as a rather provocative and fiery talk at TAM just now. So tell us what you were talking about.

JIS: I was talking about the skeptic mission. I was talking about things that skeptics have always discussed, have sometimes argued about, about what it means to be a skeptic and what we're supposed to be doing. And increasingly in recent years that discussion has enlarged in some ways and intensified in some ways, about the differences between skepticism and secular humanism, and in particular, atheism, because of the success of the so-called new atheist movement.

S: So it sounds like it's about mission creep, that maybe the mission of scientific skepticism has, maybe, gotten blurred with other agendas, as our movement grows. You made the point growing is a good thing. But that also means that we have to keep re-asking the question, what actually is our mission and our identity, and what are we being activists for?

JIS: Right. Why are we here? What do we think? What motivates us? What are our goals? It is about mission creep, absolutely. Mission creep is a policy statement. Mission creep is something for organizations to worry about rather than individuals, in many ways. And not every individual is responsible for being a strategist for the movement. But organizations have to care about that a lot. Many a non-profit organization has demolished itself or just faded away because of a lack of clarity about mission. You can only do so much. And we're talking about movements that to a great degree do overlap. There's a lot of overlapping belief, overlapping thinking. Secular humanists and especially many atheists, science-based atheists, if you will, identify as skeptics. And skeptics welcome them, and the new atheist movement, in its success, has brought a lot of attention to the skeptic movement in many ways, and vice versa. And I think in some ways we've become a victim of those successes. Because it blurred the lines for a while. But I think those lines need to be clarified, and, as I said on the stage, not as battle lines about what we're supposed to be fighting about, but rather as divisions of labor between armies that are aligned on different battle fields in the same war. You know, whether it's, you have the army and the marines and the air force and the navy; we're all supposed to be on the same side, and we're not supposed to be battling each other.

J: Are we having internal discussions and battles, not because of what the skeptical movement should be about, but more about what concerns other groups more? Like it's not really about people saying we're defining what skepticism is, it just so happens that they're bringing up topics that they find to be more important, or what their hot topics are.

JIS: I think where the tension has arisen is, the skeptic movement's been around for awhile, you know, CSICOP was founded 36 years ago, I think. And we've been discussing and trying to figure out what the mission is ever since. But I think that with the explosion of atheist activists, who are, on the one hand, who quickly self-identify as skeptics, but on the other hand are new to the skeptic movement. I think the tensions have arisen because many of those people say "no, no, no, this is what skepticism should be, and skepticism should be a lot about atheism, because I'm an atheist and I'm a skeptic."

J: Right.

JIS: And I think that's where the tensions really arise from. Is people trying to shift the focus and meaning, framing of the skeptic movement. And what I'm trying to say is that the skeptic movement needs to hold onto its core values and its core subjects. And it's not just atheists that we're under fire from, there's also the so-called skepticism 2.0, that says that, okay, enough about Bigfoot, and enough about paranormal, and enough about alien abductions or whatever the thing is. Let's talk about stuff that's actually important or that really matters. And I don't buy that at all. That's another onslaught on skepticism on another front, that I think, as Daniel Loxton has said, just because we're tired of talking about it, doesn't mean those issues don't matter.

J: Right.

JIS: Those are core. The paranormal and extraordinary claims. The debunking of extraordinary claims, the explanation of how to think about extraordinary claims, that's the skeptic's core strengths and values and expertise in things that no one else deals with in exactly the same way.

J: Right, so in other words, it's the base service that we provide to society.

JIS: Yeah. Daniel Loxton has said that scientists don't have the expertise on nonsense. On the nonsense side, right?

S: Yeah, we've said that over and over again. We got involved in the skeptical movement in 1996, and at that moment this very fight was raging. And this was mainly through CSICOP, which was the only real national organization at that time and we went to the meetings there and we got embroiled in this discussion about the lines between secular humanism and skepticism. And I remember getting personally involved in a lot of discussions with atheists who were really very passionate about the fact that skepticism is atheism. It's not this other thing, and stop worrying about UFOs and Bigfoot, God is the only thing we need to debunk. Our approach has always been, that's fine, you go do that. But don't tell me what to do.

JIS: Exactly.

S: We can define our own mission, thank you. I think that actually hurt CSICOP for awhile because they kind of got embroiled in that and kind of stalled their, they were trying to outreach to local groups and all the local groups were like, we don't want to be under the yoke of secular humanism.

JIS: I completely agree. CSICOP began as CSICOP, Committee for the Scientific Investigation of Claims of the Paranormal. Later, over time, as Paul Kurtz expanded his interest, he's a philosopher, and so now he creates Center for Inquiry and Free Inquiry magazine, and so forth. And I think that, at a time when CSICOP was the only game in town, as you say, and their influence, and the fact that most local groups had started up with CSICOP's support on the one hand, but attempts to control on the other, and now that CSICOP was side-by-side with secular humanism, and now, talk about mission creep, those missions really became conflated.

S: Yeah.

JIS: No matter how much they tried to pretend they were separate, it's the same organization. And I agree completely. And when that started to happen, I was involved with National Capital Area Skeptics, and we objected strongly to that. We're not an atheist organization, we won't be an atheist organization. As you say, if you identify as a skeptic, you're sympathetic to and supportive of skeptic cause, but you think atheism is an important place to be active, that's great, that's fine. You're completely welcome in my skeptic tent, completely welcome. But again, according to myself in the talk, what you're not welcome to do is come and move my tent.

S: Don't tell me what to do. You do what you want but don't tell me what to do.

E: I've always likened it as a tug-of-war, right? Skepticism's the rope and it's being tugged in all these different directions and trying to be claimed or, in the term, hijacked by certain other groups depending upon how extreme you want to get. And they want to try to capture it and make it their own and I think we also see this with certain pseudosciences like the anti-vax movement – they're trying to claim the term skeptics for themselves . . .

S: Global warming.

E: Global warming folks. It's everyone's pulling at these threads and they want to make it theirs, but leave skepticism alone because it's not any one individual's. Let's leave the definition as it is.

JIS: Right. But there's two different sets of forces there I would say, which is, as far as atheism, we're still along the side of scientific skepticism. And there's where that term "scientific skepticism," which I think saving the coin, is valuable because when you start talking about anti-vaxers or these, I've never met a believer in any kind of woo, who didn't immediately start the conversation by calling himself a skeptic. But they're not a skeptic in the term we mean. And they're certainly not scientific skeptics. They just mean, oh, well, I didn't believe it until I did, but the way I did has nothing to do with what we call scientific skepticism.

J: All right, so. An important question. How is the realization from Jamy's speech today, which is not new to any of us, but to the overall community, now that we've opened this discussion, how are we going to turn this into a positive thing? I think a few things that need to be said are, and Jamy said many times, we're not saying that these other organizations don't have value and they don't have fantastic mission statements or at least the work that they're trying to do is, it is moving in the right direction, pushing the ball forward; but we're saying, as the hard-core skeptical community, this is our mission statement . . .

JIS: You know I'm trying to clarify the thinking. I'm trying to help people think about what it is they want to do with their activism and their energy and their passion. If you want to start a skeptics group or become involved in the local skeptics group, great. If you want to start an atheists group or become involved in the local atheists group, fine. But think clearly about which it is you want to do and why. And in the same token, when you lend your support to a national skeptics group, if you lend support to the James Randi Educational Foundation, let's be clear about what you're lending your support to and why.

J: Okay.

JIS: And don't come in and immediately start telling us we're doing it wrong because we're active enough in your particular pet issue. The JREF has always been explicitly clear, it's in the mission statement. It's always been explicitly clear that we are concerned with scientific education, critical thinking, rational inquiry, extraordinary claims, paranormal claims, pseudoscience. This is the skeptic mission. It's always been clear about that, and enough already with people coming and saying we're gonna change the JREF mission. No, you're not gonna change the JREF mission. You're gonna come and join our mission, or you're gonna come and do something else, go and do something else. And if you need to walk away because you need to do something else, that's fine. I'm totally willing to live with that. Again, don't come in and tell me you're gonna move the tent.

J: Right.

JIS: I know exactly where the tent is. Thank you very much.

S: So, I guess one of the ways in which that can get, the lines there can get a little bit blurry is this. To go back a little bit, Jay, this conversation has been happening. This is not . . .

J: I know that but—

S: It's not like Jamy's talk was a great kick in the ass

JIS: Absolutely.

S: You know, he's quoting from—

J: Steve, I've been talking to Jamy about it for two years. I'm introducing this—

S: Oh, I know. Just to clarify for our listeners.

J: Yeah, for our audience.

S: It's not like, oh, we're just suddenly addressing this issue. I mean, he's quoting things that people have written over the last ten years, because

E: Longer than that.

J: Yeah, it has been.

S: as long as I've been in the skeptical movement, we've been having this conversation.

JIS: From the day, I have to say, you know, even CSICOP, not so much on the atheist issue at the time; that came up more when the, with the CFI and Free Inquiry, but when we started National Capital Area Skeptics, you know CSICOP was playing this game where they were not a membership organization because they wanted absolute control over their message, so they didn't want members. And they were very explicit about, we're gonna help you and we're gonna guide you, but you're not a chapter. You're not a chapter of us, you're independent. You're independent but we're gonna tell you everything to do and think. And we, at National Capital Area Skeptics, Chip Denham and I, among others, we were like, uh, actually, you know that independent thing that you were talking about, we're all for that, and as a matter of fact, we're gonna do exactly that.

S: That's what everyone did.

JIS: Even though we hosted and, listen, Phil Klass helped us start, and Phil and I, we had these arguments a lot, and it was very useful in some ways. Because as we created the bylaws, Phil was extremely paranoid about being invaded by outsiders and being infiltrated. And some of that was correct. I took that; some people were completely against that, and I thought that was valid. It's one of the reasons we created a very large board of directors so one person couldn't get in and hijack. But, the fact of the matter is, even though we hosted a national CSICOP conference two years after we started, we took that independence very very seriously. And they were aggravated about it. They were annoyed about it. And they also tended to look at the skeptic activism as a, kind of a zero sum game. When Mike Shermer came on the scene they were not happy campers. As if there was only so many skeptics out there in the world to support, and indeed, even though CSICOP gave us a mailing list, a regional skeptic acquired mailing list when we started National Capital Area Skeptics, frankly I was astonished, I don't know if I've ever said this publicly, but screw it! When 20 years later I started New York City Skeptics, and they went 'no, no, we're not gonna…' I went to CSICOP and said are you gonna help me out? No, not gonna, we're not gonna do that. We're not gonna do that. It's like 20 years later, you haven't learned anything? What?

E: Old school.

JIS: Right?

S: So here's, I think, a fuzzy area that we can get to. This is very relevant recently. So, yeah, do you have some other mission, go and do that, that's great, but don't tell us to change the scientific skeptic mission. But there are people out there, individuals, who have put two missions together. Not to say that skepticism is this other thing, but they're going to simultaneously, for example there are some popular bloggers who say "this blog is atheist, skeptical and liberal." I mean there are no bones about, I'm gonna promote a political liberal agenda at the same time that I promote atheism and skepticism. So, that kind of thing, and of course there's the Skepchick, which promotes feminism and skepticism, so as another example of that that's been very active recently. So, how do you feel about that? They're not saying that skepticism needs to be liberal or needs to be feminist, but we are choosing to do both of these things.

JIS: Right. As long as they're not saying that skepticism has to be defined by their particular interest, I'm totally fine with that. That's fine. You're welcome in the tent. But these are individuals. I'm not trying to say that we as some national organization are gonna tell you we're gonna crack the whip and we're gonna get you all in line and we're gonna tell you what to think and how to do it and what to do. But this is why I am telling you, this is why we are doing it this way.

S: Yeah.

JIS: This is why New York City Skeptics and the National Capital Area Skeptics and the JREF thinks that skepticism is this. This is what we think skepticism is, and this is why we're doing it this way. And then it's up to you, and I think for individuals, fine, tie all that together. Listen, you can make links between them; you can draw linkages between atheism and skepticism, not very hard. You can certainly, you can also draw links between probably certain left political, left-of-center political leanings and secular humanism. Certainly philosophically people can make those connections.

S: Yeah. Penn and Teller make it between libertarianism and skepticism.

JIS: Exactly. So the world is full of extraordinary claims. (laughter) So that's all fine. I'm not looking to police anybody. But it's, as you said, the important caveat, Steve, is that then they don't walk in and say "what I'm interested in, because I'm interested in all these things, that's what the skeptical agenda should be." And one other, another point that I make is that skeptics should be focused on, are focused on, have always been focused on, how to think not what to think. Atheism is one thing to think that might well have been, you might reach that conclusion through skeptical tools, rational inquiry tools. But I'm interested in teaching people a way of thinking, and that's really the guiding point. And if we stick to that, if we hue to that, then it really keeps the tent wide open in terms of diversity of cultural value issues, whether it's feminism or liberalism or libertarianism or we can go down the line on all that, vegetarianism. We can go down the line. The skeptic tent should be open to all of those things.

S: All right, well, Jamy, thank you so much for sitting down with us.

JIS: Thank you for having me, it's always a pleasure talk to you guys.

E: Yeah, I'm sorry we had nothing to talk about.

J: Yeah, right?

(laughter and overlapping comments)

JIS: Those awkward silences, you know. (laughter) If you had to listen to the real thing without all the editing, it would just be this long area of hum, it would be like a Neil Young album with just feedback. (laughter)

S: Good night, Jamy.

JIS: Thanks for having me.

Science or Fiction (1:02:15)[edit]

Voiceover: It's time for Science or Fiction.

S: Each week I come up with three science news items or facts, two genuine and one fictitious and then I challenge my panel of skeptics to tell me which one is the fake. We have a theme this week. The theme is "The Nobel Prize".

R: Nooooo.

J: Yes. I'm good with this!

E: How Nobel of you.

R: Crap.

S: Three items about the Nobel Prize. I think I just heard Jay volunteer to go first.

J: I'm psyched, let's do it!

S: All right. Item number one. The 1926 Nobel Prize in Medicine was awarded to Johannes Fibiger for his discovery of "a cure for cancer." Item number two. The New York Times announced that the 1915 Nobel Prize in Physics was to be shared by Nikola Tesla and Thomas Edison, but they never received the award, it is rumored because neither man would consent to share the award with the other. And item number three. The 1949 Nobel Prize in Medicine was shared by Antonio Caetano de Abreu Freire Egas Moniz...

E: Fiction!

S: ...for the development of the frontal lobotomy.

E: Because of that name.

R: Rrrar.

S: Jay, go first.

J: I'm going to start with the last one first. And that was the one about the guy that got the Nobel Prize for the development of the frontal lobotomy and I'm gonig to absolutely say that that one is true, that is science. The second one about, the one that was supposed to be shared by Tesla and Edison but they didn't receive the award, something about that one is reminding me of truth, I know the two of them butted heads and this would be an interesting turn of events and I do think I remember something about this so that one's true, so therefore I don't beleive that the first one, the cure for cancer is the truth, that one is the fiction.

S: OK. Rebecca.

R: Well Jay sounded so confident but I'm not sure I agree, so a cure for cancer, yeah we were just talking about how they like to wait to give it out to make sure that the thing isn't debunked or whatever, however it could be a discover that ended up not being a cure for cancer but was still amazing in its own right or it could be something that was just called a cure for cancer in the papers at the time so I can buy that one and I can also buy the idea of a Nobel prize being given to someone for the development of the frontal lobotomy, that was all the rage for a while there, that makes sense. So that leaves us with Nicola Tesla and Thomas Edison, who yeah did, obviously Tesla had a lot of resentment I'm sure towards Edison, Edison was kind of an asshole to him, however that one is weird to me because Nobel prizes, maybe they were different back then but these days I think that they are a surprise in general, I don't think anybody's quite sure that they're going to get them before they get them and so why would they refuse to consent to share the award before it's even been given to them? I don't think that that's true, so I'm going to go with that one being the fiction.

S: Alrightie, Bob?

B: Yeah, I agree with pretty much everything Rebecca said, she makes a lot of sense, the first one about the cure for cancer, that's a very interesting angle about yeah, maybe it still was dramatic in some way and initially hailed as a cure for cancer but not, obviously was not a cure for cancer, also I could justify this by saying that they just weren't as sophisticated and slick as they are now and waiting and maybe this is one of the reasons why they do that. The third one, the frontal lobotomy, yeah that was, in its time it was lauded to an extent that would be surprising to modern day people, it really seemed like an amazing treatment, you know so many studies done showing apparently that it really helped these people and I could see this guy winning a Nobel for it. The second one, to me, with Tesla and Edison seems to make too much sense, it's like yeah, that's obvious which I know is not a great reason to make something fiction, but it just kind of stands out for me, plus the fact that I really think I would have heard of this, if these two were awarded and they just didn't want to have a joint acceptance. So for that, and other reasons, I'm going to say that that one is fiction, Tesla and Edison.

S: And Evan.

E: Steve, what is the fallacy that essentially encompasses "I would have heard of that"? Isn't there a fallacy that...

(laughter)

E: Right, it's the argument from...

S: Argument ad Bobium.

B: Not always a fallacy though.

E: Hah! Congratulations Bob, you are now a fallacy.

B: We shall see.

E: Reverse order. '49 prize in medicine, Moniz, the frontal lobotomy. I know this one to be science because, if memory serves, we talked about this and we reviewed it as part of a This Day in Skepticism way back when.

R: Hmm.

B: Oh, yay.

E: So I'm saying that one is science, so it comes down to the other ones, now this 1915 one for the Nobel Prize in Physics, Tesla and Edison, Bob I've not heard of this either. I didn't even know they were up for these awards to tell you the truth, and you're right, that would have been something that you'd think they would have taught us in the history books in even the most basic science classes but I think that it's the other one that's the fiction. The cancer one. Jay, you went with that, '26 Nobel Prize. A cure for cancer, yeah he did something else if I'm not mistaken, it may have had something to do with a cure for something else, but I don't think it was cancer, I think he worked on some, on a different disease, and for the life of me I can't remember but I just don't remember the name cancer and his name going together, so I'm going to say that one's the fiction.

S: OK so we have an even split.

B: You all agree...

S: But you all agree that the 1949 Nobel Prize in Medicine was shared by Antonio Moniz for the development of the frontal lobotomy, and that one is... science.

(general agreement)

S: And yeah, interesting but that is, I do think that we talked about this before. Moniz shared the award with Walter Rudolph Hess. Hess for his discovery of the functional organization of the inter-brain as a coordinator of the activities of the internal organs, and Moniz for his discovery of the therapeutic value of leucotomy in certain psychoses.

E: Leucotomy.

S: Leucotomy is the more technical term for a frontal lobotomy, and it was considered at the time to be revolutionary. It was partly stemming from his discovery that this part of the brain, that part of the frontal lobes had this effect, that it could dramatically, but poking a hole on the brain you could dramatically alter someone's personality, in this specific case take them from being psychotic to being very placid, apathetic one might say. A very interesting part of the insurmountable evidence that the brain causes consciousness in my opinion. So very interesting that we look back now at frontal lobotomy as something very barbaric but at the time it was given the Nobel Prize, for something very ahead of its time. So let's go to number two, the New York Times announced that the 1915 Nobel Prize in Physics was to be shared by Nicola Tesla and Thomas Edison, but they never received the award, it is rumoured because neither man would consent to share the award with the other. Rebecca and Bob think that this one is the fiction, Jay and Evan think that this one is science and this one is... science.

E: Aaaaaah.

B: Curses!

J: Thank you!

R: Ew.

J: Told you I knew this stuff.

E: Thanks for blazing the trail, Jay.

S: Interesting story, it took me a long time to try to figure out how to say this one, I was saved by finding that the New York Times announced it, because I needed something, I needed to be able to say something difinitive because I couldn't absolutely verify that this actually happened, but it absolutely did happen that the New York Times announced Edison and Tesla to get Nobel Prize and then it was given to Bragg and Bragg, a father son team, one of the family teams, and not Tesla and Edison, and then the rumour started, so again it was rumoured, I couldn't find any, the official Nobel website is silent on this issue, but there are many references, mostly leading back to the same couple of sources talking about the fact that in 1912, Tesla was apparently up for the Nobel Prize in Physics and he apparently expressed the notion that he would not accept it if Edison was also given the award and then in '15 there was this premature announcement by the New York Times that they both got it and they didn't get it and so the rumour mills started and it was conventional wisdom that the prize was going to be given to them but then it was withheld and given to the other physicists when essentially both men would refuse to share the stage with the other, or would refuse to accept the prize if the other was getting it. Their rivalry was so famous by that time that that rumour instantly took off. But the Nobel organisation, the Nobel committee as far as I could find, never absolutely confirmed that that was what happened. As you said Rebecca, it's a secret who's going to get the award. But after 50 years, nominations are made public and so we do know now that both Edison and Tesla were nominated in different years for the Nobel Prize, but they never received it, which is interesting.

R: Which means?

S: Which means that the 1926 Nobel Prize in Medicine was awarded to Johannes Fibiger, I'm probably butchering that name but, for his discovery of "a cure for cancer" is fiction, although that is a rumour you will see on different websites, which I always like when websites get it wrong. But when you look at the official quote, what he was given the award for, it was for his discovery of the Spiroptera carcinoma. So he did discover a parasite that caused infections that he said caused cancer, caused cells to become cancerous, so it was thought that he discovered the cause of cancer, not the cure for cancer, and then it turns out that that was wrong also, all he did was identify one possible irritation that can cause cells to become cancerous, but lots of other things can do the same thing, trauma and infection, etc. So it's the irritation and damage to the cell that then can make it predisposed to becoming cancerous, it's nothing specific about the infectious agent that he discovered, so the conclusions of his discovery were later reversed, although he still gets credit for making significant advances in the study of cancer, he didn't find the cause, the cause of cancer, and there was never any issue of him discovering the cure for cancer, but that was how the incident was misreported on various websites that I came across.

R: Well congrations and Jay.

S: Yes.

E: Thanks.

J: Thank you.

S: So yeah, this is a rare Jay, Evan victory on Science or Fiction.

E: Yeah Jay.

J: What the hell is that supposed to me.

E: Well it just means... yeah, what the hell is that supposed to mean, yeah?

S: You two guys winning and Bob and Rebecca losing is an uncommon event.

B: I'd agree with that.

J: Statistically we've done enough shows that it's bound to happen.

S: It's bound to happen, absolutely.

E: Nice job, Jay.

J: Nice job, Evan.

S: Mainly because I'm frankly surprised that Evan went with you over Bob and Rebecca (laughs).

B: Me too.

S: Good work Evan, good work.

E: Yeah thanks, I followed by gut and it worked.

S: Better than following the herd.

E: In this case.

Skeptical Quote of the Week (1:15:07)[edit]

S: Well Jay, do you have a quote for us this week?

B: Although it's a high-quality herd he could have followed.

S: True.

J: Yep, this was a quote sent in my many people so I'm not going to give credit to the people that sent it in, but I will say that this is a quote by someone called Erika Dunning, and the quote is:

You can do magic with science, but you can't do science with magic.[1]

J: Anybody know who Erika is?

S: Yeah, Erika Dunning, she's that girl.

E: Yeah.

B: Well it's got to be...

J: It's Brian Dunning's daughter.

All: yay.

B: That's awesome.

S: How old is she?

J: Brian didn't tell me how old she is, but I'm assuming she's quite young. Brian sent it in and a lot of other listeners sent that quote in, I guess he said it on his show, I hadn't heard it, it must have been a very recent show, but I thought it was really cute and it was, I just love the minds of kids and how they just come up with things that seem so obvious but can be so...

S: Pithy.

J: ...profound and pithy, right.

B: Yeah, I like it.

J: So that's a quote by Erika Dunning!

E: Yay, Erika.

S: Good job, Erika.

B: Way to go, Erika.

E: Well done.

S: Well thanks for joining me this week, everyone.

J: Thank you Steve.

E: Good to be joined with you once again.

B: Thank you, you're welcome.

S: And until next week, this is your Skeptics' Guide to the Universe.

Voice-over: The Skeptics' Guide to the Universe is produced by SGU Productions, dedicated to promoting science and critical thinking. For more information on this and other episodes, please visit our website at www.theskepticsguide.org. You can also check out our other podcast, The SGU 5x5, as well as find links to our blogs and the SGU forums. For questions, suggestions, and other feedback, please use the "Contact Us" form on the website or send an email to info@theskepticsguide.org. If you enjoyed this episode, then please help us spread the word by leaving us a review on iTunes, Zune, or your portal of choice.


References[edit]

Navi-previous.png Back to top of page Navi-next.png