SGU Episode 183

From SGUTranscripts
Revision as of 10:26, 26 November 2012 by Gugarte (talk | contribs)
Jump to navigation Jump to search
  Emblem-pen.png This episode is in the middle of being transcribed by Gugarte (talk) as of {{{date}}}.
To help avoid duplication, please do not transcribe this episode while this message is displayed.


SGU Episode 183
21st January 2009
Universe.jpg
(brief caption for the episode icon)

SGU 182                      SGU 184

Skeptical Rogues
S: Steven Novella

B: Bob Novella

R: Rebecca Watson

J: Jay Novella

E: Evan Bernstein

Quote of the Week

The scientific tradition is distinguished from the pre-scientific tradition in having two layers. Like the latter, it passes on its theories; but it also passes on a critical attitude towards them. The theories are passed on, not as dogmas, but rather with the challenge to discuss them and improve upon them.

Karl Popper

Links
Download Podcast
SGU Podcast archive
Forum Discussion


Introduction

You're listening to the Skeptics' Guide to the Universe, your escape to reality.

S: Hello and welcome to the Skeptics' Guide to the Universe. Today's Wednesday, Jan. 21th 2009, and this is your host Steven Novella, president of the New England Skeptical Society. Joining me this evening are Bob Novella,

B: Hey everybody.

S: Rebecca Watson,

R: Hello everyone.

S: Jay Novella,

J: Hello gov'nor.

S: and Evan Bernstein.

E: And on this date, today, in 1677, the first medical book was published in the United States.

R: What medical book was that, Evan?

E: A pamphlet concerning the smallpox disease.

R: That's amazing.

E: I hope they get that cured sometime soon.

S: Oh yeah.

E: It's only been 330 years.

R: Now, we will be getting rid of that any moment now.

(laughter)

J: You know they didn't have autism back then.

(laughter)

S: Yeah, they didn't have any of the diseases they hadn't discovered and named yet.

(laughter)

E: Isn't that incredible?

S: Right.

J: So Rebecca is in London right now with Sid.

R: I'm in London. Yes.

J: That's why she said hello with an English accent and I had to respond because I'm like, you know, Pavlov's dog.

R: I was only like goading you.

J: I know. I can't help myself.

(Rebecca laughs)

S: So how are our fellow skeptics from across the pond, Rebecca?

R: I think everyone on this side of the Atlantic is fantastic and it's been a really great week so far. I did London Skeptics in the Pub on Monday and that was fantastic. I saw a lot of Skeptics' Guide friends and guests you guys know like Simon Singh was there and John Ronson who we hadn't had on the show yet but we will. He's my super best friend and he's awesome. Tim mentioned King and he was a lot of fun. Great musician. And Ben Goldacre was there. You guys met him at TAM.

S: Oh yeah.

J: Oh cool.

R: Yeah, it's been a lot of fun. I miss you guys, though.

J: Cool.

R: Yeah.

S: Yeah, we miss you last week.

R: I was really bummed to miss last week because I didn't think I was gonna be able to make it this week. I mean, it is 2am right now here in London.

S: Yeah.

B: Ouch.

R: Can we all just stop and think about the great sacrifice I'm making for you all by being on the show at 2 AM?

S: Alright that's long enough.

(laughter)

News Items

The Holographic Universe (2:33)

S: So Bob, you got the first news item this week. Tell us about the holographic universe.

J: Oh god.

B: Yeah, Jay, I did some preliminary talking about this. This one is really fascinating. I had a really good time researching this. But hold on to your beanie hats with the propellers on them. This one's pretty wicked.

R: I'm sorry, Bob, I don't have my beanie hat with a propeller on it so can I hold on to something else?

J: Yeah, just put your hand on Sid's face right now.

(laughter)

S: Rebecca, what does your beanie hat have on top of it?

R: I can't say on a family podcast.

S: Okay, use your imagination.

B: Well, scientists may have actually detected the grain of the universe. This may mean that our reality, everything we see and do, our entire universe, in fact, is like a 3 dimensional holographic image of sorts projected from somewhere else. Talk about a one two punch. This one was very very interesting. The whole story starts with a German British gravity wave detector called the GEO 600 in northern Germany. They have been trying to find, for 7 years, Einstein's theorized gravity waves and they haven't found them yet but they have run into a relatively big problem. Their detector keeps getting this background noise that will not go away. They've tried every way to rule it out. This is subtle background noise that's been plaguing them.

J: Bob, did they turn the fan off?

(laughter)

B: Yeah, right. At this point Craig Hogan enters the picture. He's a physicist at Fermilab, particle physics lab in Batavia, Illinois and he was recently appointed as the director of Fermilab's Center for Particle Astrophysics. He's been thinking about this really interesting principle called the holographic principle. It's a little complicated but the idea is that the total amount of information or entrophy that a space can contain depends on the surface or the boundary of that space and not the volume of that space. You see what I mean? So as an analogy, think of the plastic used in a beach ball being directly related to the amount of information inside the beach ball. So its not the volume of the beach that matters but there's a relationship between the surface on the outside and the inside. There's a direct almost a one to one correspondence.

S: That's a little counter intuitive. I'm sure that there's a mathematical reason for that.

B: Well, you nailed it exactly. The mathematical principle actually works extremely well with the entropy of black holes. In 1972, a physicist Jacob Bekenstein discovered that the black hole's entropy or information content is proportional to the surface area of the event horizon, which is essentially the holographic principle. The idea here is that the progenitor star, the star that exploded to become that black hole, all of the information about the 3 dimensional structure and everything about that star is encoded in the 2 dimensional event horizon. So that's basically the idea of this holographic principle.

J: What?

B: In the 1990s, 2 other physicists, you've got Susskind and 't Hooft, they extrapolated this whole principle from the black hole's event horizon to the cosmological horizon of the universe. It's essentially the boundaries of our observable universe. So they kind of extrapolated it to the entire universe. So this would mean that the universe could essentially be described as a 2 dimensional construct embedded in the boundaries of the horizon of the universe.

J: I don't get this at all.

B: Okay, let me just continue this thought then. So then our visible universe could then be seen as a 3 dimensional representation of processes that are happening on this 2 dimensional surface.

J: Is the universe in 3 dimensions or not?

B: Well, some people would say that the 3 dimensions is an illusion and reality is you've got this 2 dimensional surface and we're just a projection but it's real enough. It's real enough to me and there's still way way too much that we don't know about this to really come to any firm conclusions. The hologram analogy, it's not perfect but it does help. Think of a hologram on your credit card. It's basically a piece of plastic with a 2 dimensional pattern etched onto it. When you shine light on it, a 3-d pattern emerges so that's kind of what's happening with this holographic principle. There's a few more steps here so bear with me. This one's a little more nasty than usual. So now we're back to Hogan. One of his keen insights here was that he realized that if this principle could be applied to the universe then each tiny bit of our horizon would be linked to somewhere inside. Right? Now the tiniest bit of anything anywhere allowed by quantum theory is called the Planck length. Have you heard of that? That's the smallest conceivalble thing that could exist. It's 1.6 x 10-36 meters. That's about as small as small can get. There's no conceivalble way to examine the universe at this scale. It's a hundred billion billion times smaller that a proton. Really really tiny. That's a fundamental unit of length, a grain, allowed in space-time. So you've got this Planck length or this grain. Now, since in general, surface area like I said is less than its volume. Right? If you think of a surface of a beach ball that surface area of the ball is much smaller than the interior volume. Right? But the thing is each grain on the surface corresponds to a point on the inside. So imagine you take this beach ball and put dots all around it. Each dot would map to a much bigger dot inside the ball. Right? If you fit a hundred dots on the outside, it would fit a trillion similarly sized dots on the inside. So, these dots have to be bigger on the inside. You see what I am saying? This is the key concept here. So, this is what Hogan realized. He figured that if we had a measuring instrument detailed enough, we can potentially see the pixels or grain or Planck length of space-time because the holographic version of them in the universe would be much bigger than they really are on the surface.

S: So, is the Planck length the bigger dot on the inside?

B: No, the Planck length …

J: It's both.

B: It's kind of both but the true Planck length is the figure that I said, 1.6 x 10-36 meters, impossibly small, but since we are potentially living in this holographic projection, it's kind of blurry. It's kind of a lower res version of what's real, of what's the 2 dimensional surface of the cosmological horizon. So that's the real size, which we can never see but because we might be this projection, it's kind of a blurry bigger image, because your corresponding a tiny Planck length on the surface to a bigger unit of volume in 3 dimensional space, much bigger as a matter of fact, maybe 10-16 meters is one measurement I saw being thrown around. So, a really cool thing is that Hogan, this guy is so sharp that he predicted, he was thinking, alright, what measuring instruments are sharp enough or detailed enough to see this and he realized that the GEO 600 gravity wave detector would be sensitive enough and he predicted, because they are so sensitive, they might be getting noise, these quantum convulsions from space-time, in their measurements and he got in touch with them and that's exactly what they had. They actually sent him a plot of the noise that they were seeing and it matched his predictions. So, there's one other bit of evidence that I thought was fairly compelling. It's not just the black hole evidence that seems to work with the event horizon. It's not just Hogan's predictions. There's another theorist named Juan Maldacena. He actually showed … somehow he created a hypothetical universe. I don't know what it consisted of, whether it was software or not, but he made a hypothetical universe of 5 dimensions and the physics inside it matched the physics on the 4 dimensional boundary. So, the fact that he was able to do that, gives a little credence to what we are saying here. So, in his model, the particles that interact on the surface corresponded exactly with the interacting strings on the interior. So, because he was able to do that hypothetically, it makes you think that well okay there might be something to this and I think it's worth pursuing. But remember, the bottom line is, no one knows if this is true yet. Most scientists consider this more of an idea or a hypothesis than a theory and, as a matter of fact, it is really a double edged sword. If it's true, we may never see gravity waves because the resolution of the universe is too low to detect them. But, on the other hand, of course, it could help with determining quantum gravity. One great quote I found here said that ultimately, we may have our first indication of how space-time emerges out of quantum theory. So, this could be really huge and if it starts panning out, we would definitely see some Nobel prizes being thrown around. So, check out my blog on Friday.

J: Okay, what the hell? Who comes up with this stuff? Who comes up with this stuff? Come on.

S: Joe Baker Donuts.

J: I mean, really, this …

E: Alright Joe!

J: It's mind numbing. It's mind numbing.

R: Bob, as soon as I figure out what you are talking about, it is going to blow my mind. I can't wait to hear this episode 3 times.

E: Michio Kaku is having a hard time with this one.

S: I wonder, does this tie in with string theory at all? Is this completely independent line of a …

B: Actually, there are some connections with string theory and M theory and the other good thing that may come of this is that if this is actually shown to be likely then it could actually be used to say, alright, these quantum gravity theories do not include the holographic principle so we can exclude them and these versions of string theory and M theory do include it so they are more likely. We will retain them. They are more likely to be true. So, yeah, there is a connection.

J: Steve, this isn't actually string theory. This is called dental floss theory.

B: Mental floss theory.

(laughter)

S: I guess the next thing to think about is why is the universe built this way?

J: Because some spaceship is projecting us in a holodeck right now.

E: Computer, end program.

B: Good one. Evan, that's a good one. Every now and then you got to say that just to check it out.

S: Does this support the matrix theory of reality?

R: Did you just say the matrix theory? Like, the theory that we are all just batteries?

S: Living in a matrix.

J: Yeah, of course. Where the hell have you been, Rebecca? Alright, so, but Bob, let me ask you a question. How does this advance the human race?

E: The projection of the human race, the hologram.

B: You never know what's gonna come of things. What's that quote when J. J. Thomson discovered the electron? There was some big …

J: Holy shit?

B: No …

(laughter)

B: There was some big science physics dinner. People were saying to J. J. Thomson's electron, may nothing come of it whatsoever. Of course, now, our entire world's economy is based on electrons. You never what's gonna come out of it and who cares? Just the thrill of discovery, the discovery of the fundamental aspects of the universe. If that doesn't get you off then I don't know.

S: Right. That story reminds me of the story of the cosmic background radiation where the radio astronomers couldn't get rid of this background noise and it turns out that was the left over noise from the big bang and the profile of that noise matched predictions of the big bang and that ties together in a similar way.

B: Yeah, that was really an interesting analogy. I kept thinking of that while I was researching this. It's very similar. You have this background noise. Don't know what it is. Remember, they went into their telescope and they were cleaning out the bird crap and trying to make it and it's still there and finally they realized … they got Nobels out of this and we learned so much. It really reinforced the big bang and all sorts of great stuff came out of it.

S: We're gonna have to revisit this whole concept of the holographic universe. Maybe if we could wrangle a physicist onto the show to talk to us about it, we might be able to delve into it a little bit deeper.

B: Absolutely.

S: But there you got the basic idea.

J: You don't get it though, Steve? I totally get this. You don't understand this?

S: I understand what Bob said but it's hard to know how this plugs into the whole construct of quantum mechanics and theoretical physics. It's interesting about the Planck length 'cause that's again, when you understand the basics, like the college level of quantum mechanics, the Planck length is everywhere in quantum mechanics. Everything seems to always reduce down into the Planck length. This seems to be a fundamental building block of reality and yet there isn't really any theory as to why that would be. This seems like the first step towards figuring that out. Why there is that … that's where the word quantum comes from, that the universe is not analog, it's discreet. You can only get down to this minimum quantum of stuff of space-time. Why is that? I don't know. I think when we understand that we'll get a much better handle on the whole quantum mechanical thing.

B: Yeah, you mention the Planck length, Steve. The value of Planck length is derived from constants such as the speed of light, Planck's constant, and the gravitational constant. So, they are deriving it from that. So, if the foundation is strong and then so is that.

Intelligent Design and Academic Freedom (16:07)

S: Alright, let's bring this back down to earth a little bit. We're gonna talk about the intelligent design and academic freedom in Louisiana and Texas. As we've discussed previously, the latest strategy of the intelligent design movement after they failed to get intelligent design forced into public schools … they had an epic legal failure with the Dover trial a couple of years ago. Their next strategy was academic freedom. Trying to get freedom for teachers to teach controversial theories or to criticize evolution or to use material that is not the official recognized material for their school system and they have now been successful in getting just such a law passed in Louisiana. This was passed by the state's board of elementary and secondary education and this is the Louisiana Science Education Act. Casey Luskin who is one of the chief propagandist for the Discovery Institute, which is that intelligent design quote unquote think tank, characterized the bill as a victory for Louisiana students and teachers. So, if he likes it, it has to be bad. Essentially what the law says is again, as I said, teachers have the freedom to use other text. Now, if you didn't have the context and you just read this law, it seems fairly innocuous and, then again, that has been the arc of the intelligent design creationism strategy, is to make their efforts from a legal point of view more and more innocuous so that they can pass legal muster but the purpose is always the same. They are trying to crack open the door into science classrooms and then, once that door is cracked open, they will shove as much pseudoscience and anti-evolution propaganda and creationism through that crack as they can. That's the goal. In this particular case, what they are trying to do is open that door for their alternative science text. The Discovery Institute publishes a book called Explore Evolution, which is chock full of nonsense and anti-evolution pseudoscience, and that is the text that they want teachers to use and this law was crafted to give teachers cover for using these kinds of pseudoscientific text in their science classrooms. Interestingly, there was, in the wrangling and the fighting back and forth over this law, previously, in one version of it, there was language saying that the teaching of intelligent design was specifically prohibited but proponents of the law pressured the board to remove those caveats in early December and now the law has been passed without any caveats at all. So, this, unfortunately, is a legal victory for the intelligent design buffoons and we'll have to see how this plays out. Probably nothing can happen until the bill actually gets applied. Just the bill itself doesn't say anything that is probably illegal because it doesn't say you have to teach religious belief or anything that can be construed as religion. It's really just how it gets applied. So, this, unfortunately, is a loss for the good guys.

R: Well, yeah, what we need is for somebody to start teaching intelligent falling in school as opposed to gravity and then, you know, send it back so they can work out something that doesn't sound completely ridiculous. That doesn't allow these idiots to pass off their stupid religion as science.

S: Right. This is the next phase that we've been discussing and, again, the key intellectual malfunction here is that they are confusing academic freedom with academic standards. The whole purpose of having in the curriculum an approved text or what not is to maintain some kind of standards. Now, of course, that doesn't mean that teachers can't be free to explore within those boundaries and to try to use methods based upon their own experience in their profession, that's fine. They can't hijack the curriculum of the school in order to teach religious belief as science and that's what this law is … really, the purpose of this is to give teachers cover who want to do that. Similar kind of fighting going on in Texas although it seems that things are going better there for the good guys. Just today, there has been testimony before the school board in terms of approving the new science standards and they have been actually dramatically improved over the previous set of standards. Now the fight, in this case, is over whether or not to include in the standards the provision to allow for the teaching of the strength and weaknesses of scientific theory, specifically evolution. Here, this is again kind of under the academic freedom rubric but they are taking a slightly different linguistic tact here just trying to say that scientific standard should expressly include the teaching of the strengths and weaknesses of specific theories. Of course, this is just another way to crack open the door. What they are trying to do is then say that their text, their explore evolution, is specifically allowed because it's teaching the weaknesses of evolutionary theory and the law requires that the strengths and weaknesses of scientific theories be taught. So, again, it's all deceptive. It's all completely deceptive. It's just these attempts to crack open the door so they can shove their bullshit through. But that text, the strengths and weaknesses provision, has been removed and now that's what they're debating about but, hopefully, if the current version goes through without the strengths and weaknesses text then that would be a victory for science in Texas but, again, we have to see how that plays out.



S: The Skeptics' Guide to the Universe is produced by the New England Skeptical Society in association with the James Randi Educational Foundation and skepchick.org. For more information on this and other episodes, please visit our website at www.theskepticsguide.org. For questions, suggestions, and other feedback, please use the "Contact Us" form on the website, or send an email to info@theskepticsguide.org. If you enjoyed this episode, then please help us spread the word by voting for us on Digg, or leaving us a review on iTunes. You can find links to these sites and others through our homepage. 'Theorem' is produced by Kineto, and is used with permission.


Navi-previous.png Back to top of page Navi-next.png